D型旋風(fēng)除塵器設(shè)計含7張CAD圖帶開題報告-獨家.zip,旋風(fēng),除塵器,設(shè)計,CAD,開題,報告,獨家
設(shè)計開題報告
題 目
D型旋風(fēng)除塵器設(shè)計
學(xué)生姓名
班級學(xué)號
專業(yè)
1.選題的目的與意義
煙氣是燃料燃燒生成的氣態(tài)燃燒產(chǎn)物,使氣體和煙塵的混合物,是污染居民區(qū)大氣的主要原因。煙氣的成分很復(fù)雜,氣體包括水蒸氣、SO2、N2、O2、CO、CO2碳?xì)浠衔镆约暗趸衔锏?,煙塵包括燃料的灰分、煤粒、油滴、以及高溫裂解產(chǎn)物等。因此煙氣對環(huán)境的污染是多種毒物的復(fù)合污染。煙塵對人體的危害與顆粒的大小有關(guān),對人體產(chǎn)生危害的多是直徑小于10微米的飄塵,尤其以1-2.5微米的飄塵危害性最大。
中國是世界上以燃煤為主要能源的國家,也是燃煤污染物排放的第一大國,燃煤多造成的酸雨污染和顆粒物污染而導(dǎo)致的環(huán)境問題,已成為世界各國關(guān)注的熱點。在排放的燃煤煙氣里,含有大量的粉塵和二氧化硫,影響環(huán)境質(zhì)量,危害人體健康。粉塵的性質(zhì),決定了其控制的緊迫性。目前,我國部分地區(qū),空氣中PM2.5指標(biāo)嚴(yán)重超標(biāo)。因此,早日解決我國的環(huán)境問題,迫切需要加大加強對燃煤煙氣的除塵系統(tǒng)的研究與推廣應(yīng)用。
本課題所設(shè)計的旋風(fēng)除塵器是除塵裝置的一種。除塵機理是使含塵氣流坐旋轉(zhuǎn)運動,借助于離心力將塵粒從氣流中分離并捕集于器壁,再借助重力作用使塵粒落入灰斗。旋風(fēng)除塵器的各個部件都有一定的尺寸比例,每一個比例關(guān)系的變動,都能影響旋風(fēng)除塵器的效率和壓力損失,其中除塵器直徑、進(jìn)氣口尺寸、排氣管直徑為主要影響因素。在使用時應(yīng)注意,但超過某一界限時,有利因素也能轉(zhuǎn)化為不利因素。另外,有的因素對于提高除塵效率有利,但卻會增加壓力損失,因而對各因素的調(diào)整必須兼顧。
優(yōu)點:
(1) 結(jié)構(gòu)簡單 (2)易于制造、安裝和維護(hù)管理
(3)設(shè)備投資和操作費用都較低 (4)動力消耗不大
(5)已廣泛用于從氣流中分離固體和液體粒子,或從液體中分離固體粒子
旋風(fēng)除塵器屬于中效除塵器,且可用于高溫?zé)煔獾膬艋?,是?yīng)用廣泛的一種除塵器,多應(yīng)用于鍋爐煙氣除塵、多級除塵及預(yù)除塵。它的主要缺點是對細(xì)小塵粒(<5μm)的去除效率較低。
給定參數(shù)如下:
煙氣流量: 1500m3/h
除塵效率: 80%
設(shè)計壓力: 0.18MPa
設(shè)計溫度: 100℃
進(jìn)口粉塵濃度: 100g/m3(標(biāo))
2.國內(nèi)外發(fā)展現(xiàn)狀
2.1發(fā)展歷程
自1886年摩爾斯第一臺圓錐形旋風(fēng)除塵器問世以來的百余年里,許多學(xué)者對其流場特性、結(jié)構(gòu)、型式、尺寸比例的研究一直進(jìn)行著。范登格南于1929---1939年對旋風(fēng)除塵器氣流型式的研究發(fā)現(xiàn)了旋風(fēng)除塵器中存在雙渦流。1953年特林丹畫出了旋風(fēng)除塵器內(nèi)的流線。20世紀(jì)70年代西門子公司推出帶二次風(fēng)的旋風(fēng)除塵器。1983年許宏慶在論文中提出旋風(fēng)除塵器內(nèi)徑向流速分布呈現(xiàn)非軸向?qū)ΨQ性現(xiàn)象,研究出抑制湍流耗散的降阻技術(shù)。2001年浙江大學(xué)研究發(fā)現(xiàn)除塵器方腔內(nèi)的流場偏離幾何中心,并呈現(xiàn)中間為強旋流動和邊壁附近為弱旋的準(zhǔn)自由蝸區(qū)的特點。隨著數(shù)學(xué)模型的完善和計算機仿真的引入,旋風(fēng)除塵器的研究與設(shè)計將更為深入。雖然對旋風(fēng)除塵器的運行機理做了大量的研究工作,但由于旋風(fēng)除塵器內(nèi)部流態(tài)復(fù)雜,準(zhǔn)確的測定有關(guān)參數(shù)比較困難,因而牽今理論上仍不十分完善,捕集小于5nm塵粒的效率不高。
2.2國內(nèi)情況
張吉光等于1991年根據(jù)旋風(fēng)器內(nèi)氣流的軸向速度分布規(guī)律確定塵粒在旋風(fēng)器內(nèi)的平均停留時間分析了旋風(fēng)器內(nèi)氣流的三維速度分布規(guī)律對固相顆粒分離的影響及旋風(fēng)器各主要結(jié)構(gòu)參數(shù)和運行參數(shù)的影響,并考慮筒體與錐體邊界層內(nèi)顆粒的分離效應(yīng),建立了旋風(fēng)除塵器的分級效率數(shù)學(xué)模型。
陳建義、時銘顯等于1993年在對PV型旋風(fēng)除塵器內(nèi)部流場及濃度測定的基礎(chǔ)上,考慮了顆粒間的相互碰撞、反混等對分離性能的影響,建立了旋風(fēng)除塵器分級效率的多區(qū)計算模型。
王廣軍、陳紅于2001年考慮了徑向濃度梯度以及重力沉降和徑向加速過程對固相顆粒分離的影響,建立了鍋爐細(xì)粉分離分離效率的計算模型。沈恒根等在假設(shè):不考慮邊界層作用;忽略邊壁作用,塵粒到達(dá)外邊壁就被捕集;進(jìn)入旋風(fēng)除塵器前,塵粒濃度分布均勻;不考慮重力作用,提出了平衡塵粒模型。運用渦匯升降流三維氣流分析塵粒運動,提出平衡塵粒分布,給出了平衡塵粒計算公式。清華大學(xué)的王連澤、彥啟森認(rèn)為:旋風(fēng)除塵器內(nèi)的流動主要受切向速度支配,旋風(fēng)除塵器的性能,也主要與切向速度相關(guān),同時,他們應(yīng)用粘性流體力學(xué)理論,推導(dǎo)出了旋風(fēng)除塵器內(nèi)切向速度的計算公式。
張曉玲、亢燕銘、付海明等通過對旋風(fēng)除塵器內(nèi)塵粒粒子的運動和捕集特性的分析,討論了無量綱準(zhǔn)則數(shù)Reynolds和Stokes與粒子分離過程的關(guān)系,并在對經(jīng)典文獻(xiàn)給出的試驗數(shù)據(jù)進(jìn)行回歸分析的基礎(chǔ)上,得到了一個有影響除塵效率的主要無量綱數(shù)表示的旋風(fēng)除塵器分級效率半經(jīng)驗計算式。
2.3國外情況
Sproull于1970年采用與電除塵器類似的方法,給出了旋風(fēng)除塵器效率的分離計算公式[8]。D.Leith和W.Licht于1972年考慮湍流擴散對固相顆粒分離的影響,基于邊界層分析理論,把氣流中懸浮顆粒的橫向混合理論與旋風(fēng)除塵器內(nèi)氣流的平均停留時間相結(jié)合,從理論上嚴(yán)格推導(dǎo)出了分級效率模型。
60年代,美國煉油廠應(yīng)用了Shell石油公司研制的高效多管旋風(fēng)除塵器后,使催化裂化裝置內(nèi)高溫再生煙氣的能量回收技術(shù)得到推廣。1966年美國燃燒工程公司開發(fā)了雙旋流型旋風(fēng)管,在粉煤鍋爐上工業(yè)應(yīng)用。 大于15mm顆?;境齼?,對分離5mm顆粒的效率可達(dá)91%。到了70年代,Shell石油公司又對旋風(fēng)管進(jìn)行了改進(jìn),獲得了無底板旋風(fēng)管的專利。這種除塵器是將旋風(fēng)管的排塵板去掉后,在旋轉(zhuǎn)的排塵氣排出旋風(fēng)管底部時,猶如在該處建立了一道氣體屏障,灰斗返回氣中夾帶的細(xì)塵不會進(jìn)入。
3. 課題的主要工作
3.1 準(zhǔn)備相關(guān)工作
對D型旋風(fēng)除塵器的現(xiàn)狀、發(fā)展?fàn)顩r、組成和工作原理進(jìn)行初步了解。
3.2 材料選擇及主體、零部件結(jié)構(gòu)設(shè)計
選擇各零部件的材料選擇,選擇旋風(fēng)除塵器的類型與結(jié)構(gòu),操作條件的選擇
操作方式的選擇。旋風(fēng)除塵器幾何設(shè)計和結(jié)構(gòu)設(shè)計。
3.3 強度計算與校核
對旋風(fēng)除塵器進(jìn)行強度計算、校核。
3.4 加工工藝,裝配程序,安全防腐
選擇加工工藝,及編寫裝配程序,考慮安全性能及采取防腐措施。
3.5 繪制裝配圖及零部件圖
利用AutoCAD繪圖軟件繪制出旋風(fēng)除塵器的裝備圖及各個零件圖。
3.6 查找不足,加以改正
查找設(shè)計中的不足之處,加以改正。
3.7 翻譯外文文獻(xiàn),編寫說明書
翻譯外文文獻(xiàn),并按要求編寫說明書。
4.課題的進(jìn)度安排
2月17日~2月26日:尋找與課題相關(guān)的參考書及文獻(xiàn)資料,撰寫開題報告。
2月27日~3月10日:集中實習(xí)。
3月11日~3月24日:完成外文翻譯。
3月25日~3月29日:查閱文獻(xiàn)資料,確定設(shè)計方案,開始課題設(shè)計。
3月30日~4月14日:旋風(fēng)除塵器的幾何設(shè)計和總體設(shè)計,計算并校核。
4月15日~4月21日:選擇加工工藝,裝配過程,考慮安全防腐等細(xì)節(jié) 。
4月22日~5月5日:依據(jù)設(shè)計步驟繪制零件圖,裝配圖。
5月6日~5月21日:提交論文初稿,答辯前的準(zhǔn)備,交論文正式稿。
5月22日~5月26日:畢業(yè)答辯。
參考文獻(xiàn)
[1] 金國淼.化工設(shè)備設(shè)計全書-除塵設(shè)備[M] .北京:化學(xué)工業(yè)出版社,2003
[2] 工程材料實用手冊編輯委員會.工程材料實用手冊[M] .北京:中國標(biāo)準(zhǔn)出版社,2002
[3] 朱有庭.化工設(shè)備設(shè)計手冊[M] .北京:化學(xué)工業(yè)出版社,2005
[4] 朱振華,邵澤波.過程裝備制造技術(shù)[M] .北京:化學(xué)工業(yè)出版社,2011
[5] 華南理工大學(xué)化工原理教研組.化工過程及設(shè)備設(shè)計[M] .廣州:華南理工大學(xué)出版社,1986
[6] 趙惠清,蔡紀(jì)寧.化工制圖 [M] .北京:化學(xué)工業(yè)出版社,2015
[7] 譚蔚.化工設(shè)備設(shè)計基礎(chǔ)[M] .天津:天津大學(xué)出版社,2014
[8] 張艷輝,劉有智,霍紅,陳丹. 旋風(fēng)除塵器的研究進(jìn)展[J]. 華北工學(xué)院學(xué)報,1998,19(04):44-48
[9] 陳宏基. 旋風(fēng)除塵器機理性能研究及改進(jìn)[D].江南大學(xué),2006
[10] 王廣軍,陳紅. 電廠鍋爐細(xì)粉分離器性能分析數(shù)學(xué)模型[J]. 中國電機工程學(xué)報,2001,(09):54-58
[11] 陳建義,時銘顯. 旋風(fēng)分離器分級效率的多區(qū)計算模型[J]. 石油大學(xué)學(xué)報(自然科學(xué)版),1993,(02):54-58
[12] 向曉東.現(xiàn)代除塵理論與技術(shù)[M]. 北京: 冶金工業(yè)出版社,2002.6.1
[13] 王福軍.計算流體動力學(xué)分析[M]. 北京:清華大學(xué)出版社,2004.9.1
[14]陳海娥,李康,劉金玉,陳群. 旋風(fēng)除塵CFD分析[J]. 汽車技術(shù),2003,(04):13-16
[15]張吉光,葉龍. 高效旋風(fēng)器分級效率理論計算的新方法[J]. 青島建筑工程
學(xué)院學(xué)報,1991,(04):41-48
[16]喻健良.化工設(shè)備機械基礎(chǔ)[M].大連:大連理工大學(xué)出版社.2009
指導(dǎo)教師批閱意見
指導(dǎo)教師(簽名): 年 月 日
D型旋風(fēng)除塵器設(shè)計
摘 要
此畢業(yè)設(shè)計的介紹了旋風(fēng)除塵器的各部分結(jié)構(gòu)尺寸的確定以及旋風(fēng)除塵器性能的計算,以普通旋風(fēng)除塵器為基礎(chǔ),結(jié)合此課題的現(xiàn)代設(shè)計方法,設(shè)計了一臺符合一定壓力損失和除塵效率的D型旋風(fēng)除塵器,并繪制了該旋風(fēng)除塵器的裝配圖、零件圖。本畢業(yè)設(shè)計由以下幾步完成:第一步,通過查閱各種資料了解旋風(fēng)除塵器的型號選擇和設(shè)計原理,并計算出旋風(fēng)除塵器各部分的尺寸;第二步,根據(jù)資料上的材料選擇標(biāo)準(zhǔn)以及強度校核公式,對旋風(fēng)除塵器各零部件的材料進(jìn)行選擇并進(jìn)行強度校核;第三步,對旋風(fēng)除塵器進(jìn)行耐磨、防腐處理,并完成裝配設(shè)計;第四步,用CAD軟件繪制該旋風(fēng)除塵器的裝配圖、零件圖;第五步,整理資料,選取與畢業(yè)設(shè)計相關(guān)的英文文獻(xiàn)進(jìn)行翻譯完成設(shè)計說明書。旋風(fēng)除塵器的除塵效率影響繁多,想要進(jìn)一步提高旋風(fēng)除塵器的效率,還需要對其結(jié)構(gòu)尺寸、密封性等方面進(jìn)行進(jìn)一步的優(yōu)化。
關(guān)鍵詞:旋風(fēng)除塵器;壓力損失;除塵效率;強度
ABSTRACT
This graduation design introduces the determination of the size of the structure of the cyclone dust collector and the calculation of the performance of the cyclone dust collector. Based on the conventional cyclone dust collector and the modern design method of this topic, a design method is designed to meet the pressure loss and dust Efficiency of the D-type cyclone dust collector, and draw the cyclone dust collector assembly drawings, parts drawings. The graduation design is completed by the following steps: The first step, through access to a variety of information to understand the cyclone dust collector model selection and design principles, and calculate the various parts of the cyclone dust; the second step, according to the material on the material selection Standard and strength check formula, the cyclone dust collector parts of the material selection and strength check; the third step, the cyclone dust collector wear, corrosion treatment, and complete the assembly design; the fourth step, with CAD Software to draw the assembly of the cyclone dust collector, part of the map; the fifth step, sorting out the information, select and graduate design related to the English literature to complete the design instructions. The efficiency of the cyclone dust collector has many advantages, and it is necessary to further improve the efficiency of the cyclone dust collector, and it needs to be further optimized for its structural size and sealing.
Key words: cyclone dust collector;pressure loss;dust Efficiency;strength
目錄
1 緒論 1
1.1引言 1
1.2 旋風(fēng)除塵器的介紹 1
1.3 旋風(fēng)除塵器的工作原理和氣體流動狀況 1
1.4影響旋風(fēng)除塵器性能的因素 4
1.5旋風(fēng)除塵器的分類 5
1.6 D型旋風(fēng)除塵器 6
1.7擬定設(shè)計方案 7
2 確定旋風(fēng)除塵器各部分的尺寸 7
2.1給定的設(shè)計參數(shù) 7
2.2 確定進(jìn)口風(fēng)速 7
2.3 計算旋風(fēng)除塵器的幾何尺寸 7
2.4 壓力損失的計算 8
2.5總除塵效率的計算 9
3 零部件的數(shù)據(jù)計算及材料選擇 10
3.1 風(fēng)機的選擇 10
3.2 排塵閥的選擇 10
3.3殼體的設(shè)計與材料選擇 11
3.4 密封圈的設(shè)計 12
3.5 殼體端蓋的設(shè)計 12
3.6 支座的選擇與計算 12
3.7 支腿的設(shè)計 12
3.8 氣體管道的設(shè)計計算 12
4 強度計算與校核 13
4.1 筒體和椎體的氣壓試驗強度校核 13
4.2 排氣管的厚度的確定及強度校核 14
4.3 支座的載荷校核 14
4.4 支腿的強度校核 16
5 主要零件的加工工藝 17
5.1箱體零件的主要技術(shù)要求 17
5.2 筒體及錐體的加工 18
6旋風(fēng)除塵器的耐磨措施與制造要求 18
6.1 耐磨措施 18
6.2制造安裝要求 20
7 旋風(fēng)除塵器的裝配 20
7.1裝配的概念 20
7.2 連接方式的選擇 20
結(jié)論 22
致謝 23
參考文獻(xiàn) 24
1 緒論
1.1引言
旋風(fēng)除塵器設(shè)計是我通過學(xué)習(xí)了全部課程后進(jìn)行的一次綜合性的設(shè)計。這次畢業(yè)設(shè)計充分體現(xiàn)了理論聯(lián)系實際的宗旨,通過這次畢業(yè)設(shè)計,使我認(rèn)識到作為一名工作人員我們不僅要有扎實的專業(yè)基礎(chǔ)知識,還要有良好的技術(shù)水平、以及嚴(yán)謹(jǐn)務(wù)實的工作態(tài)度,這次畢業(yè)設(shè)計鍛煉了我查閱資料自我學(xué)習(xí)的能力。
隨著人類社會的發(fā)展與進(jìn)步,人們對生活質(zhì)量和自身的健康越來越重視,對空氣質(zhì)量也越來越關(guān)注。而我國是世界上以燃煤為主要能源的國家,也是燃煤污染物排放的第一大國,燃煤多造成的酸雨污染和顆粒物污染而導(dǎo)致的環(huán)境問題,已成為世界各國關(guān)注的熱點。在排放的燃煤煙氣里,含有大量的粉塵和二氧化硫,影響環(huán)境質(zhì)量,危害人體健康。粉塵的性質(zhì),決定了其控制的緊迫性。目前,我國部分地區(qū),空氣中PM2.5指標(biāo)嚴(yán)重超標(biāo)。因此,早日解決我國的環(huán)境問題,迫切需要加大加強對燃煤煙氣的除塵系統(tǒng)的研究與推廣應(yīng)用。
工業(yè)中常見的除塵器可分為:機械式除塵器、電除塵器、袋式除塵器、濕式除塵器等。機械式除塵器包括重力沉降室、慣性除塵器、旋風(fēng)除塵器等。重力沉降室是通過重力作用使塵粒從氣體中沉降分離的除塵裝置,主要用于高效除塵的預(yù)除塵裝置,除去大于40μm以上的粒子。慣性除塵器是借助塵粒本身的慣性力作用使其與氣流分離,主要用于凈化密度和粒徑較大的金屬或礦物性粉塵。旋風(fēng)除塵器是利用旋轉(zhuǎn)氣流產(chǎn)生的離心力是塵粒從氣體中分離的裝置,多用作小型燃煤鍋爐消煙除塵和多級除塵、預(yù)除塵設(shè)備。
1.2 旋風(fēng)除塵器的介紹
旋風(fēng)除塵器是通過旋轉(zhuǎn)的含塵氣體所產(chǎn)生的離心力,將粉塵從氣體中分離出來的一種干式固-氣分離裝置。
旋風(fēng)除塵器已有百余年的歷史,現(xiàn)已廣泛用于石油、化工、機械、冶金、建筑等工業(yè)部門。旋風(fēng)除塵器的主要特點是:結(jié)構(gòu)簡單;操作、維護(hù)方便;操作彈性大,性能穩(wěn)定,不受含塵氣體的濃度、溫度限制。一般認(rèn)為,旋風(fēng)除塵器對于捕集、分離5~10以上的粉塵效率較高,而用用以捕集含塵氣體中大部分徑粒在10以下粉塵時效率大幅度降低,不適合用于該情況下的除塵。
1.3 旋風(fēng)除塵器的工作原理和氣體流動狀況
1.31 工作原理
旋風(fēng)除塵器的結(jié)構(gòu)見圖1。當(dāng)含塵氣流以12~25m/s速度由進(jìn)氣管進(jìn)入旋風(fēng)除塵器時,氣流由原來的直線運動變?yōu)閳A周運動。旋轉(zhuǎn)的氣流絕大部分延器壁自圓筒體呈螺旋形向下,朝著錐體流動。通常稱此氣流為外旋氣流。含塵氣體在旋轉(zhuǎn)的過程中產(chǎn)生了離心力,將密度大于氣體的塵粒甩向器壁。當(dāng)塵粒與器壁接觸時便失去慣性力,轉(zhuǎn)而靠入口速度的動量和向下的重力加速度延著器壁下落,進(jìn)入排灰管。旋轉(zhuǎn)下降的外旋氣流在到達(dá)錐體時,由于倒圓錐形的收縮而向旋風(fēng)除塵器的中心靠攏。根據(jù)“旋轉(zhuǎn)矩”的不便原理,其切向速度不斷提高。當(dāng)旋轉(zhuǎn)氣流到達(dá)錐體的某一個位置時,就以同樣的旋轉(zhuǎn)方向從旋風(fēng)除塵器的中部開始由下而上的做螺旋形流動,及內(nèi)旋氣流。最后已經(jīng)凈化的氣體經(jīng)過排氣管排出器外。另外一部分未被捕集的塵粒由此逃離。
自氣體流入的另外一小部分氣體,轉(zhuǎn)向旋風(fēng)除塵器的頂蓋流動,然后向排氣光外側(cè)向下流動。當(dāng)?shù)竭_(dá)排氣管的下端時,反向向上隨上升的中心氣流共同從排氣管排出。而在這一部分上旋氣流中的塵粒也隨同被排出。
圖1 旋風(fēng)除塵器
1-排灰管 2-圓錐體 3-圓筒體
4-進(jìn)氣管 5-排氣管 6-頂蓋
1.32 氣體流動狀況
旋風(fēng)除塵器內(nèi)的氣體運動實際是非常復(fù)雜的。1949年Ter.Linden通過實驗對旋風(fēng)除塵器內(nèi)氣體運動時的三維速度:即切向、徑向和軸向速度,以及全壓和靜壓分布提出了一種具有代表性的理論。經(jīng)過許多研究者的研究得出了以下結(jié)論。
(1) 切向加速度
切向速度對粉塵顆粒的捕集與分離起著至關(guān)重要的作用。含塵氣體在切向速度的作用下,使塵粒由里向外離心下降。
排氣管以下任意截面上的切向加速度沿半徑的變化規(guī)律可分為三個區(qū)域,如下圖2。Ⅰ區(qū)內(nèi),切向速度=常數(shù)。Alexander通過實驗提出了以下公式:
式中: 含塵氣在Ⅰ區(qū)內(nèi)切向加速度(m/s);
含塵氣進(jìn)入旋風(fēng)除塵氣的速度(m/s);
旋風(fēng)除塵器圓筒直徑(m);
旋風(fēng)除塵器排氣管直徑(m);
旋風(fēng)除塵器進(jìn)口截面積(m2)
2 切向速度分布圖
排氣管下部的中心氣流稱為強制旋流區(qū)Ⅲ。類似于剛體的旋轉(zhuǎn)運動。切向速度與半徑之比為一常數(shù)。
常數(shù)
此常數(shù)為角速度。
半自由旋流區(qū)Ⅱ的分布規(guī)律為:
常數(shù)
n為速度分布指數(shù),一般在0.5~0.9之間。
不同的研究者由各自的實驗條件與測定方法得出的n值如下表:
表1 速度分布系數(shù)測定值
測定者
n值
測定者
n值
Lissman
1
Alexander
0.5~0.75
Procket
0.5
Ter.Linden
0.52
Rosin
0
First
0.88
Shepherd
0.5~0.7
井伊谷鋼一
0.8
Stairmand
0.5
池森龜鶴
0.7~0.8
Alexander給出了計算n值得公式:
式中: 旋風(fēng)除塵器筒體直徑(mm);
絕對溫度(K);
速度分布指數(shù)。
影響n值得因素是很復(fù)雜的,與數(shù)有關(guān),Re越大,n值越趨向于1。n值隨排灰管直徑減小而增大,隨排氣管的減小而減小,當(dāng)排灰管趨近圓筒直徑時,n可以近似等于1。
(2) 徑向速度
徑向速度是影響旋風(fēng)除塵器分離性能的重要因素。因為徑向速度其值遠(yuǎn)比切向速度小的多,所以極難測定。中國科學(xué)院力學(xué)研究所測得Φ400mmB型旋風(fēng)除塵器約為(1~5)m/s,且徑向速度分布呈非對稱性的特點。
(3) 軸向速度
軸向速度分布構(gòu)成了旋風(fēng)除塵器的外層下行、內(nèi)層上行的氣體雙層旋轉(zhuǎn)流動結(jié)構(gòu)。實驗表明,零軸向的速度面與器壁是平行的。即使是在錐體部分,也能保證外層流厚度基本不變。
(4)渦流
渦流也稱二次渦流,在旋風(fēng)除塵器中也稱次流,是由軸向速度和徑向速度構(gòu)成。渦流對旋風(fēng)除塵器的分離效率和壓力損失影響較大。常見的渦流有4種,短路流:旋風(fēng)除塵器排氣管外面、頂蓋與筒體內(nèi)壁之間,由于徑向速度和軸向速度的存在,將形成局部渦流(上渦流),夾帶著相當(dāng)數(shù)量的塵粒向中心流動,并沿著排氣管的表面下降,最后隨著中心上升氣流逃逸出排氣管。縱向旋渦流:縱向旋渦流是以旋風(fēng)除塵器內(nèi)外旋流分界面為中心的器內(nèi)再循環(huán)形成的縱向流動。外層旋流中的局部渦流:由于旋風(fēng)除塵器制造問題,如焊縫、表面凸起等,產(chǎn)生與主流方向垂直的渦流,雖然其量只有主流的1/5左右,但是這種流動還是會使壁面附近或已被分離的粒子從新甩到內(nèi)層旋流,降低了旋風(fēng)除塵器的分離能力。底部夾帶:外層旋流在錐體底部向上返轉(zhuǎn)時可以產(chǎn)生局部渦流,會將塵粒重新卷起,假使旋流一直延伸到灰斗,同樣會把灰斗中的粉塵,特別是細(xì)的粉塵攪動帶起,被上層氣流帶走。
1.4影響旋風(fēng)除塵器性能的因素
旋風(fēng)除塵器的性能一般由其尺寸大小、排灰裝置氣密性、工作條件而決定。
其中在旋風(fēng)除塵器的尺寸因素中最主要的是筒體直徑和椎體高度。一般,旋風(fēng)除塵器的直徑越小所受離心力越大,除塵效率也就越高。但過小也會降低除塵效率。因此,一般筒體的直徑不應(yīng)小于50~75mm。筒體長度增加,除塵效率也會增加,但過大阻力會增大,因此同體長度不大于5倍筒體直徑。
在實際設(shè)計中,旋風(fēng)除塵器各部件的尺寸比例對旋風(fēng)除塵器的性能也會造成一定的影響,如下表:
表2 旋風(fēng)除塵器部件尺寸影響因素
尺寸變化
性能趨勢
壓力損失
效率
除塵器直徑增大
降低
降低
加長筒體
稍有降低
提高
入口面積加大(流量保持不變)
降低
降低
入口面積加大(速度保持不變)
提高
降低
加長錐體
稍有降低
提高
錐體排出孔變大
稍有降低
-
錐體排出孔變小
稍有提高
-
增加排出孔在筒體內(nèi)的長度
提高
-
排出管直徑變大
提高
降低
排灰裝置是旋風(fēng)除塵器中一個不可忽視的部分,除塵器錐度處氣流處于湍流狀態(tài),而粉塵由此排出容易出現(xiàn)二次夾帶的可能性,如果設(shè)計不當(dāng),造成排灰裝置漏氣,會導(dǎo)致除塵效率的大幅度降低,以下為除塵效率與漏氣率之間的關(guān)系表:
表3 排灰裝置氣密性對除塵效率的影響
實驗號
排灰裝置氣密性(漏氣率)
旋風(fēng)除塵器效率
1
0
90%
2
5%
50%
3
15%
0%
對于工作條件來說,關(guān)鍵因素一般為入口速度、粉塵粒徑、氣體物理性質(zhì)等。當(dāng)入口 速度上升時,分割直徑將下降、效率提升、提升,但入口速度不宜過大,當(dāng)其過大時,將導(dǎo)致二次揚塵增加,所以入口速度一般控制在12~25m/s。
1.5旋風(fēng)除塵器的分類
旋風(fēng)除塵器的種類繁多,分類方法也各有不同。
按性能分:可分為高效旋風(fēng)除塵器。筒體直徑小,分離較細(xì)的粉塵,除塵效率在95%以上;高流量旋風(fēng)除塵器。筒體直徑大,用于處理很大的氣流量,除塵效率為50%~80%;通用旋風(fēng)除塵器。處理中等氣體流量,其除塵效率80%~95%。
按結(jié)構(gòu)型式分,可分為長錐體、圓筒形、擴散性、旁通型。
按組合、安裝情況分為內(nèi)旋風(fēng)除塵器、外旋風(fēng)除塵器、立式與臥式以及單筒與多管旋風(fēng)除塵器。
按氣流導(dǎo)入情況分:可分為切向?qū)牖蜉S向?qū)?,氣流進(jìn)入旋風(fēng)除塵器后的流動路線-反轉(zhuǎn)、直流,以及帶二次風(fēng)的形式,可概括的分為切流反轉(zhuǎn)式旋風(fēng)除塵器、軸流式旋風(fēng)除塵器。
1.6 D型旋風(fēng)除塵器
D型旋風(fēng)除塵器是一種新型高效旋風(fēng)除塵器。開始用與石油煉制,如流化床Ⅳ型催化裝置,作為反應(yīng)器、再生器的內(nèi)旋風(fēng)分離器。
D型旋風(fēng)除塵器,根據(jù)結(jié)構(gòu)型式,可以分為DⅠ、DⅡ與DⅢ型三種。如下圖3所示。
圖3 DⅠ型旋風(fēng)除塵器 DⅡ型旋風(fēng)除塵器 DⅢ型旋風(fēng)除塵器
DⅠ型旋風(fēng)除塵器屬于螺旋面進(jìn)口型旋風(fēng)除塵器。DⅠ型旋風(fēng)除塵器由于其長徑比H/D0較小,所以體型緊湊,鋼耗較小,也便于耐磨材料的襯里,常作為內(nèi)旋風(fēng)除塵器,以便處理含塵濃度較高、塵粒較粗的含塵氣體。由于它的進(jìn)口截面較小,在處理相同的氣量情況下,與其他除塵器相比起進(jìn)口速度較高,因此,壓力損失也就比較別的旋風(fēng)除塵器大些。另外,對于回收比較細(xì)的粉塵,其效率也不夠理想。
DⅡ、DⅢ型旋風(fēng)除塵器的區(qū)別僅僅在于DⅡ型是900蝸殼進(jìn)口。DⅢ型是切向進(jìn)口。它們的特點是圓筒段為平頂,分離式高度較DⅠ型大,排氣管與圓筒體的直徑較DⅠ型小,用以提高除塵效率。對回收含塵濃度較高的細(xì)粉塵極為理想。
D型旋風(fēng)除塵器阻力系數(shù)的影響因素有以下幾點:
(1) 進(jìn)口氣速 進(jìn)口氣速對D型旋風(fēng)除塵器的阻力系數(shù)基本沒有影響。
(2) 結(jié)構(gòu)型式 de/D0越大,D型旋風(fēng)除塵器的阻力系數(shù)越小,在相同的情況下,DⅠ型旋風(fēng)除塵器的阻力系數(shù)最小,DⅢ其次,DⅡ型的阻力系數(shù)最大。
(3) 排氣管直徑 同一結(jié)構(gòu)的D型旋風(fēng)除塵器的阻力系數(shù)隨著排氣管直徑的增加而減小,對于不同型號的旋風(fēng)除塵器,阻力系數(shù)的降低速率也是不一樣的。
(4) 筒體直徑及排氣管形狀 根據(jù)實驗,同一結(jié)構(gòu)型式不同直徑的D型旋風(fēng)除塵器在排氣管形狀與de/D0相同條件下測得的阻力系數(shù)基本相同。但收縮型排氣管較之直管型排氣管其阻力系數(shù)要小。
1.7擬定設(shè)計方案
首先根據(jù)設(shè)計要求,將該D型旋風(fēng)除塵器的各個部位的相關(guān)尺寸計算好,并求出其壓力損失、除塵效率。再對該旋風(fēng)除塵器的各個部位進(jìn)行相關(guān)的材料選擇、強度校核,對不符合要求的地方進(jìn)行改正。最后做好加工工藝的選擇、防腐和耐磨措施以及裝配方案的選擇。
2 確定旋風(fēng)除塵器各部分的尺寸
2.1給定的設(shè)計參數(shù)
煙氣流量: 1500m3/h
除塵效率: 80%
設(shè)計壓力: 0.18MPa
設(shè)計溫度: 100℃
進(jìn)口粉塵濃度: 110g/m3
旋風(fēng)除塵器類型:D型
2.2 確定進(jìn)口風(fēng)速
根據(jù)推薦進(jìn)口風(fēng)速取vj=18m/s
2.3 計算旋風(fēng)除塵器的幾何尺寸
2.31進(jìn)口面積Fj的確定
進(jìn)氣口的截面一般為長方形,尺寸為a和b,根據(jù)處理氣量Q和進(jìn)氣速度vj可以得到
由于處理氣量Q為煙氣流量等于1500m3/h
Fj=a×b=×18=0.03㎡
取a=2b,則a=0.24m,b=0.12m。
2.32筒體尺寸的確定
根據(jù)離心力公式,旋風(fēng)除塵器的直徑越小,其旋轉(zhuǎn)半徑也越小導(dǎo)致粉塵顆粒的離心力越大,除塵效率也就越高。但是當(dāng)筒體直徑過小時,旋風(fēng)除塵器器壁與排氣管太近,可能導(dǎo)致較大直徑顆粒有可能反彈到中心氣流被帶走,降低除塵效率。另外,筒體太小會導(dǎo)致堵塞。因此,一般直徑不要小于50-75mm。
因為b和筒體直徑D0的比例關(guān)系一般在0.2到0.5之間,這里取0.2,即b=0.2D0,則D0=0.6m。
筒體長度取h=1.5D0=1.5×0.6=0.9m。
2.33椎體尺寸的確定
椎體長度H-h與D0的比例關(guān)系一般在2.0到2.5之間,這里取2.0,
H-h=2.0D0=2×0.6=1.2m
排灰口長度D2與D0的比例關(guān)系一般在0.15到0.4之間,這里取0.25,
D2=0.25D0=0.25×0.6=0.15m
2.34出口管直徑d0與插入深度h0的確定
出口管直徑d0與D0的比例關(guān)系一般在0.3到0.5之間,這里取0.5,
d0=0.5D0=0.5×0.6=0.3m
插入深度h0與D0的比例關(guān)系一般在0.3到0.75之間,這里取0.4,
h0=0.4D0=0.4×0.6=O.24m
2.4 壓力損失的計算
根據(jù)Shepherd-Lapple的壓力計算公式
式中: 阻力系數(shù)
氣體重度(kg/m3)
g 重力加速度(m/s2)
Vj 進(jìn)口氣速(m/s)
由于旋風(fēng)除塵器類型為D型,D型旋風(fēng)除塵器的阻力計算公式
式中:d0 旋風(fēng)除塵器排氣管直徑(m);
D0 旋風(fēng)除塵器直徑(m);
m、n 系數(shù)(與旋風(fēng)除塵器結(jié)構(gòu)型式有關(guān)),m=2.02~2.50,n=2.23~2.41。
DⅠ型、DⅡ型、DⅢ型旋風(fēng)除塵器的阻力系數(shù)見下表
表4 DⅠ型、DⅡ型、DⅢ型旋風(fēng)除塵器的阻力系數(shù)
DⅠ型
DⅡ型
DⅢ型
a=0.453m
直管型排氣管
直管型
收縮性排氣管
b=0.191m
d0=0.525D0
=7.82
=2.26(d0/D0)-2.41
=2.5(d0/D0)-2.23
=2.02(d0/D0)-2.35
本設(shè)計選用DⅡ型直管型排氣管除塵器,所以
=2.26×()-2.41
=12
在100℃、0.18Mpa的條件下,空氣重度
=1.293×()×()
=1.7 kg/m3
則壓力損失
=12××1.7
=337.2 mm H2o
=3304.56 pa
2.5總除塵效率的計算
在一定的進(jìn)口含塵濃度范圍內(nèi),D型旋風(fēng)除塵器的總除塵效率與進(jìn)口氣含塵濃度成正比。通過實驗測得的結(jié)果與數(shù)學(xué)關(guān)聯(lián)得到D型旋風(fēng)除塵器的總除塵效率與進(jìn)口粉塵濃度之間的計算公式:
式中: 旋風(fēng)除塵器的總除塵效率(%);
C 進(jìn)口含塵濃度(g/Nm3);
p 系數(shù)(由旋風(fēng)除塵器結(jié)構(gòu)及粉塵性質(zhì)決定),一般p=0.1~0.3。
q 系數(shù)(和旋風(fēng)除塵器操作條件有關(guān)),一般q=0.05~0.5。
查閱資料得,p=0.247,q=0.098。
則總除塵效率
=1-0.25×110-0.098
=84.2%
3 零部件的數(shù)據(jù)計算及材料選擇
3.1 風(fēng)機的選擇
根據(jù)風(fēng)機在規(guī)定轉(zhuǎn)速下產(chǎn)生壓力大小,可分為高壓、中壓、低壓風(fēng)機。在除塵系統(tǒng)中一般為中、高壓風(fēng)機。
根據(jù)設(shè)計條件,本設(shè)計選用選用鍋爐離心通風(fēng)機Y-9-35-12。
3.2 排塵閥的選擇
旋風(fēng)除塵器下部出現(xiàn)漏風(fēng)時,除塵效率會出現(xiàn)較為明顯的下降。怎樣在不漏風(fēng)的情況下進(jìn)行正常排灰是旋風(fēng)除塵器的一個重要問題。
參考《除塵設(shè)備》的除塵器排灰裝置,選擇翻板式排料閥。
翻板式排料閥的結(jié)構(gòu)原理是靠重力作用的杠桿機構(gòu),密封作用取決于灰柱高度?;抑叨扔梢韵鹿酱_定:
式中: 灰柱高度(m);
灰斗中的負(fù)壓值(mm H2O)
粉塵堆積重度(kg/m3)
翻板式排料閥的進(jìn)口接管直徑可由下式確定:
式中: 翻板式排料閥進(jìn)口接管直徑(m);
捕集的粉塵量(kg/s);
翻板式排料閥的單位負(fù)荷,可在60~100kg/m2s范圍內(nèi)選取。
Φ100型和Φ150型翻版式排料閥的結(jié)構(gòu)尺寸如下圖4。
圖4 翻板式排料閥
(注:括號內(nèi)為Φ150型,不加括號為共有)
3.3殼體的設(shè)計與材料選擇
3.31殼體的介紹
這種零件的內(nèi)外結(jié)構(gòu)復(fù)雜,他是用來支撐、包容運動零件或其它的零件,因此其內(nèi)部常有空腔。箱體的內(nèi)腔常用來安裝軸、齒輪、套、軸承等零件,因此兩端都有裝軸承蓋及套的孔。雖然箱體的結(jié)構(gòu)樣式多種多樣,但有其主要的共同特點:形狀復(fù)雜、壁薄且不均勻,內(nèi)部呈腔形,加工部位多,加工難度大,既有精度要求較高的孔系和平面,也有許多精度要求較低的緊固孔。
旋風(fēng)除塵器中的箱體材料可以選Q245R,殼體分為筒體和錐體兩部分。
3.32筒體和椎體壁厚的計算
《化工設(shè)備設(shè)計基礎(chǔ)》式3-12筒體的計算壁厚公式
式中: 計算壓力(MPa);
圓筒內(nèi)徑(mm);
設(shè)計溫度t℃下筒體材料的許用應(yīng)力(MPa);
焊接接頭系數(shù);
壁厚附加量(mm);
鋼板負(fù)偏差(或鋼管負(fù)偏差)(mm);
腐蝕裕量(mm);
=0.18MPa,=600mm,查《化工設(shè)備設(shè)計基礎(chǔ)》附表1得=求147Mpa。
由于采用單面焊對接接頭,局部無損探傷,所以,由《化工設(shè)備設(shè)計基礎(chǔ)》表3-10得到=0.8。
碳素鋼和低合金鋼單面腐蝕取=1mm,查《化工設(shè)備設(shè)計基礎(chǔ)》表3-11得到=0.25mm,則C=0.25+1=1.25mm。
=0.46+1.25=1.71mm
圓整后取厚度為3mm。
復(fù)驗×15%=3×%15
=0.45>0.25符合要求。
該旋風(fēng)除塵器的筒體和椎體可用3mm厚的碳素鋼板制作。
3.4 密封圈的設(shè)計
為了減小因設(shè)計和裝配誤差引起的漏風(fēng)量,需要在殼體端蓋和殼體之間設(shè)計一個密封圈,起密封作用。密封圈材料選擇橡膠材料,密封圈的內(nèi)徑要小于殼體內(nèi)徑,可以確定為580mm,厚度和寬度不需要設(shè)計很大,可以確定為6mm和10mm。一半嵌在殼體端蓋一半嵌在殼體端邊。
3.5 殼體端蓋的設(shè)計
殼體端蓋有著多方面的作用,可以密封防漏氣??紤]到與殼體配合端蓋的內(nèi)徑確定為301mm,外徑確定為600mm。在殼體的內(nèi)面設(shè)計一個槽配合密封圈,槽的寬度與密封圈的厚度相等為6mm,深度為其寬度的一半為5mm。
3.6 支座的選擇與計算
立式容器支座主要有耳式支座、支撐式支座、裙式支座三種。因為筒體壁厚較小,故采用不帶墊板的AN型耳式支座。根據(jù)JB/4721.3-2007《耳式支座》,初選AN型吊耳式支座1,支座材料選用Q235A,如圖3-1所示
3.7 支腿的設(shè)計
初選材料為Q235-B,d=40mm,l=2.5
3.8 氣體管道的設(shè)計計算
氣體管道是旋風(fēng)除塵器系統(tǒng)一個不可缺少的部分,需要凈化的氣體由氣體管道進(jìn)入旋風(fēng)除塵器,凈化后的氣體也是由管道排出。因此,氣體管道的設(shè)計對除塵系統(tǒng)的能耗、除塵效率、工作能力等有巨大的影響。
3.81 除塵管道的直徑計算
根據(jù)《除塵設(shè)備》7-3的公式:
式中: 氣體流量(m3/s);
圓形管道的內(nèi)徑(m);
管道內(nèi)的氣體流速(m/s);
計算出管道的直徑為
=0.17m
=170mm
3.82 管道材質(zhì)的選用與管壁厚度的確定
本設(shè)計選用(GB3092—1993)焊接鋼管,根據(jù)《除塵設(shè)備》表7-5得到管壁厚度為5mm。
3.83管道內(nèi)氣速的確定
管道內(nèi)的氣速應(yīng)合理的確定。氣速太小,氣體中的粉塵易沉積,嚴(yán)重的會破壞除塵系統(tǒng)的正常運轉(zhuǎn);氣速太大,壓力損失會成平方的增長,粉塵對管壁的磨損加劇,使管道使用壽命縮短。
除塵管道內(nèi)氣速參照《除塵設(shè)備》表7-6、表7-7,由于管道材料選用的鋼管,所以管道內(nèi)氣速vg=12m/s。
4 強度計算與校核
4.1 筒體和椎體的氣壓試驗強度校核
根據(jù)已求得的條件可得
根據(jù)《化工設(shè)備機械基礎(chǔ)》式4-7得
可見,所以符合強度要求。
4.2 排氣管的厚度的確定及強度校核
由于排氣管是D/Se≥20的圓筒,可以假設(shè)Sn=2.5mm,由《化工設(shè)備設(shè)計基礎(chǔ)》表3-11及對腐蝕裕量的取值可以得出C=2mm,因此Se=Sn-C=2.5-2=0.5mm,
==0.83
=300
由《由化工設(shè)備機械基礎(chǔ)》查得A=0.0001,碳素鋼在常溫時的彈性模量為194×10-3Mpa,系數(shù)B為115Mpa。
按計算需要用《化工設(shè)備機械基礎(chǔ)》外圧力公式5-19:
=
=0.38Mpa
由此可見,[p]>pc,所以,出氣管可以用2.5mm的碳素鋼制作。
4.3 支座的載荷校核
由《化工設(shè)備機械基礎(chǔ)》耳式支座實際承受的載荷可按下面的式子進(jìn)行近似計算
式中:Q 支座實際承受的載荷(KN);
D 支座安裝尺寸(mm);
g 重力加速度,取g=9.8m/s;
Ge 偏心載荷(N);
h 水平力作用點到底板的高度(mm);
k 不均勻系數(shù),安裝3個支座時,取k=1;安裝3個以上的
支座時,取k=0.83;
m0 設(shè)備總質(zhì)量(包括殼體及其附件,內(nèi)部介質(zhì)及保溫層的質(zhì)
量)(kg);
n 支座數(shù)量;
P 水平力,取Pw和Pe的最大值(N);
當(dāng)容器高徑比不大于5,且總高度H0不大于10m時,Pw和Pe可按下式計算,超出此范圍的容器本標(biāo)準(zhǔn)不推薦使用耳式支座。
水平地震力:
Pe=0.5aem0g(N)
式中: ae 地震系數(shù),對7、8、9級地震分別為0.23、0.45、0.90。
水平風(fēng)載荷:
式中: 容器外徑(mm)有保溫層時取保溫層外徑;
風(fēng)壓高度變化系數(shù),按設(shè)備質(zhì)心所取高度取;
容器總高度(mm);
10m高度處的基本風(fēng)壓值(N/m2);
偏心距(mm);
求支座安裝尺寸
mm
求偏心載荷
Ge=(a0-bo)l0ρ
=(0.283×0.143-0.28×0.14)×0.6×7.85×103
=6N
設(shè)備總質(zhì)量取m0=1500kg,地震系數(shù)取ae=0.23,則水平地震力為:
=0.5×0.23×1500×9.8
=1690N
風(fēng)壓高度變化系數(shù)取=0.54,則水平風(fēng)載荷為:
=0.95×0.54×250×606×3500×10-6
=272N
由于,所以取。
取不均勻系數(shù)k=0.83;支座個數(shù)n=4個;水平力作用點到底板的高度h=250mm;Se=200mm。
由以上條件可以求出
=5.03KN
由以上結(jié)果可見,Q<[Q],所以AN型耳式支座1符合要求。
4.4 支腿的強度校核
由靜力平衡方程求出支反力
Fb=1127N
剪力和彎矩方程為
Q=2817.5 (0
收藏