2019-2020年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-8 曲線(xiàn)與方程《教案》.doc
《2019-2020年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-8 曲線(xiàn)與方程《教案》.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-8 曲線(xiàn)與方程《教案》.doc(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-8 曲線(xiàn)與方程《教案》 【教學(xué)目標(biāo)】 1.了解方程的曲線(xiàn)與曲線(xiàn)的方程的對(duì)應(yīng)關(guān)系. 2.了解解析幾何的基本思想和利用坐標(biāo)法研究幾何問(wèn)題的基本方法. 3.能夠根據(jù)所給條件選擇適當(dāng)?shù)姆椒ㄇ笄€(xiàn)的軌跡方程. 【重點(diǎn)難點(diǎn)】 1.教學(xué)重點(diǎn):能夠根據(jù)所給條件選擇適當(dāng)?shù)姆椒ㄇ笄€(xiàn)的軌跡方程; 2.教學(xué)難點(diǎn):學(xué)會(huì)對(duì)知識(shí)進(jìn)行整理達(dá)到系統(tǒng)化,提高分析問(wèn)題和解決問(wèn)題的能力; 【教學(xué)策略與方法】 自主學(xué)習(xí)、小組討論法、師生互動(dòng)法 【教學(xué)過(guò)程】 教學(xué)流程 教師活動(dòng) 學(xué)生活動(dòng) 設(shè)計(jì)意圖 環(huán)節(jié)二: 考綱傳真: 1.了解方程的曲線(xiàn)與曲線(xiàn)的方程的對(duì)應(yīng)關(guān)系. 2.了解解析幾何的基本思想和利用坐標(biāo)法研究幾何問(wèn)題的基本方法.3.能夠根據(jù)所給條件選擇適當(dāng)?shù)姆椒ㄇ笄€(xiàn)的軌跡方程. 真題再現(xiàn); 【xx高考新課標(biāo)1卷】設(shè)圓的圓心為A,直線(xiàn)l過(guò)點(diǎn)B(1,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過(guò)B作AC的平行線(xiàn)交AD于點(diǎn)E. (I)證明為定值,并寫(xiě)出點(diǎn)E的軌跡方程; (II)設(shè)點(diǎn)E的軌跡為曲線(xiàn)C1,直線(xiàn)l交C1于M,N兩點(diǎn),過(guò)B且與l垂直的直線(xiàn)與圓A交于P,Q兩點(diǎn),求四邊形MPNQ面積的取值范圍. 【解析】(Ⅰ)因?yàn)?,故,所以,故.又圓的標(biāo)準(zhǔn)方程為,從而,所以.由題設(shè)得,,,由橢圓定義可得點(diǎn)的軌跡方程為:(). (Ⅱ)當(dāng)與軸不垂直時(shí),設(shè)的方程為,,.由得.則,.所以.過(guò)點(diǎn)且與垂直的直線(xiàn):,到的距離為,所以.故四邊形的面積.可得當(dāng)與軸不垂直時(shí),四邊形面積的取值范圍為. 當(dāng)與軸垂直時(shí),其方程為,,,四邊形的面積為12.綜上,四邊形面積的取值范圍為. 考點(diǎn):圓錐曲線(xiàn)綜合問(wèn)題 知識(shí)梳理: 知識(shí)點(diǎn)1 曲線(xiàn)與方程的定義 一般地,在直角坐標(biāo)系中,如果某曲線(xiàn)C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立如下的對(duì)應(yīng)關(guān)系: 那么,這個(gè)方程叫做曲線(xiàn)的方程,這條曲線(xiàn)叫做方程的曲線(xiàn). 知識(shí)點(diǎn)2 求動(dòng)點(diǎn)的軌跡方程的基本步驟 1.必會(huì)結(jié)論;(1)“曲線(xiàn)C是方程f(x,y)=0的曲線(xiàn)”是“曲線(xiàn)C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解” 的充分不必要條件. (2)曲線(xiàn)的交點(diǎn)與方程組的關(guān)系: ①兩條曲線(xiàn)交點(diǎn)的坐標(biāo)是兩個(gè)曲線(xiàn)方程的公共解,即兩個(gè)曲線(xiàn)方程組成的方程組的實(shí)數(shù)解; ②方程組有幾組解,兩條曲線(xiàn)就有幾個(gè)交點(diǎn);方程組無(wú)解,兩條曲線(xiàn)就沒(méi)有交點(diǎn). 2.必清誤區(qū);(1)求軌跡方程時(shí),要注意曲線(xiàn)上的點(diǎn)與方程的解是一一對(duì)應(yīng)關(guān)系.檢驗(yàn)可從以下兩個(gè)方面進(jìn)行:一是方程的化簡(jiǎn)是否是同解變形;二是是否符合題目的實(shí)際意義. (2)求點(diǎn)的軌跡與軌跡方程是不同的要求,求軌跡時(shí),應(yīng)先求軌跡方程,然后根據(jù)方程說(shuō)明軌跡的形狀、位置、大小等. 考點(diǎn)分項(xiàng)突破 考點(diǎn)一:直接法求軌跡方程 1.已知點(diǎn)F(0,1),直線(xiàn)l:y=-1,P為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線(xiàn)l的垂線(xiàn),垂足為Q,且=,則動(dòng)點(diǎn)P的軌跡C的方程為( ) A.x2=4y B.y2=3x C.x2=2y D.y2=4x 【解析】 設(shè)點(diǎn)P(x,y),則Q(x,-1).∵=,∴(0,y+1)(-x,2)=(x,y-1)(x,-2),即2(y+1)=x2-2(y-1),整理得x2=4y,∴動(dòng)點(diǎn)P的軌跡C的方程為x2=4y.故選A.【答案】 A 2.已知?jiǎng)訄A過(guò)定點(diǎn)A(4,0),且在y軸上截得弦MN的長(zhǎng)為8.求動(dòng)圓圓心的軌跡C的方程. 【解】 如圖,設(shè)動(dòng)圓圓心為O1(x,y),由題意,得|O1A|=|O1M|.當(dāng)O1不在y軸上時(shí), 過(guò)O1作O1H⊥MN交MN于H,則H是MN的中點(diǎn), ∴|O1M|=,又|O1A|=, ∴=.化簡(jiǎn)得y2=8x(x≠0). 當(dāng)O1在y軸上時(shí),O1與O重合,點(diǎn)O1的坐標(biāo)為(0,0)也滿(mǎn)足方程y2=8x,∴動(dòng)圓圓心的軌跡C的方程為y2=8x. 歸納;利用直接法求軌跡方程的關(guān)鍵和注意點(diǎn) 1.利用直接法求解軌跡方程的關(guān)鍵是根據(jù)條件準(zhǔn)確列出方程,然后進(jìn)行化簡(jiǎn). 2.運(yùn)用直接法應(yīng)注意的問(wèn)題 (1)在用直接法求軌跡方程時(shí),在化簡(jiǎn)的過(guò)程中,有時(shí)破壞了方程的同解性,此時(shí)就要補(bǔ)上遺漏的點(diǎn)或刪除多余的點(diǎn),這是不能忽視的. (2)若方程的化簡(jiǎn)過(guò)程是恒等變形,則最后的驗(yàn)證可以省略. 考點(diǎn)二: 定義法求軌跡方程 (1)△ABC的頂點(diǎn)A(-5,0),B(5,0),△ABC的內(nèi)切圓圓心在直線(xiàn)x=3上,則頂點(diǎn)C的軌跡方程是________. (2)已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡為L(zhǎng),設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n. ①求圓C的圓心軌跡L的方程; ②求滿(mǎn)足條件m=n的點(diǎn)M的軌跡Q的方程. 【解析】 (1)由題意知|CA|-|CB|=6<10,則頂點(diǎn)C的軌跡是以點(diǎn)A,B為焦點(diǎn)的雙曲線(xiàn)的右支.又2a=6,c=5,則b2=c2-a2=16,從而頂點(diǎn)C的軌跡方程為-=1(x>3).【答案】 -=1(x>3) (2)①設(shè)圓x2+(y+4)2=1的圓心O(0,-4),圓x2+(y-2)2=1的圓心O′(0,2),圓C的半徑為r,由題意知,|CO|=r+1,|CO′|=r+1,從而|CO|=|CO′|,所以l為線(xiàn)段OO′的垂直平分線(xiàn),l的方程為y=-1. ②由m=n知,動(dòng)點(diǎn)M到定點(diǎn)F和定直線(xiàn)l的距離相等.由拋物線(xiàn)的定義知,動(dòng)點(diǎn)M的軌跡Q是以點(diǎn)F(0,1)為焦點(diǎn),以直線(xiàn)y=-1為準(zhǔn)線(xiàn)的拋物線(xiàn),且p=2,從而軌跡Q的方程為x2=4y. 跟蹤訓(xùn)練1.如圖所示,已知C為圓(x+)2+y2=4的圓心,點(diǎn)A(,0),P是圓上的動(dòng)點(diǎn),點(diǎn)Q在圓的半徑CP所在的直線(xiàn)上,且=0,=2.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程. 【解】 圓(x+)2+y2=4的圓心為C(-,0),半徑r=2, ∵=0,=2,∴MQ⊥AP,點(diǎn)M為AP的中點(diǎn),即QM垂直平分AP.連結(jié)AQ,則|AQ|=|QP|, ∴||QC|-|QA||=||QC|-|QP||=|CP|=r=2.又|AC|=2>2,根據(jù)雙曲線(xiàn)的定義,點(diǎn)Q的軌跡是以C(-,0),A(,0)為焦點(diǎn),實(shí)軸長(zhǎng)為2的雙曲線(xiàn), 由c=,a=1,得b2=1,因此點(diǎn)Q的軌跡方程為x2-y2=1. 歸納:定義法求軌跡方程的適用條件及關(guān)鍵 1.適用條件;動(dòng)點(diǎn)與定點(diǎn)、定直線(xiàn)之間的某些關(guān)系滿(mǎn)足直線(xiàn)、圓、橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義. 2.關(guān)鍵;定義法求軌跡方程的關(guān)鍵是理解平面幾何圖形的定義. 提醒:弄清各種常見(jiàn)曲線(xiàn)的定義是用定義法求軌跡方程的關(guān)鍵. 考點(diǎn)三: 相關(guān)點(diǎn)(代入)法求軌跡方程 (1)已知長(zhǎng)為1+的線(xiàn)段AB的兩個(gè)端點(diǎn)A,B分在x軸、y軸上滑動(dòng),P是AB上一點(diǎn),且=,則點(diǎn)P的軌跡方程為_(kāi)_______. (2)設(shè)直線(xiàn)x-y=4a與拋物線(xiàn)y2=4ax交于兩點(diǎn)A,B(a為定值),C為拋物線(xiàn)上任意一點(diǎn),求△ABC的重心的軌跡方程. 【解析】 (1)設(shè)A(a,0),B(0,b),P(x,y),則 =(x-a,y),=(-x,b-y),由=得(x-a,y)=(-x,b-y),即所以 又a2+b2=3+2,所以+y2=1. 【答案】?。珁2=1 (2)設(shè)△ABC的重心為G(x,y),點(diǎn)C的坐標(biāo)為(x0,y0),A(x1,y1),B(x2,y2).由方程組消去y并整理得x2-12ax+16a2=0.∴x1+x2=12a, y1+y2=(x1-4a)+(x2-4a)=(x1+x2)-8a=4a. ∵G(x,y)為△ABC的重心,∴∴ 又點(diǎn)C(x0,y0)在拋物線(xiàn)上,∴將點(diǎn)C的坐標(biāo)代入拋物線(xiàn)的方程得 (3y-4a)2=4a(3x-12a),即2=(x-4a). 又點(diǎn)C與A,B不重合,∴x≠(62)a,∴△ABC的重心的軌跡方程為 2=(x-4a)(x≠(62)a). 跟蹤訓(xùn)練1.P是橢圓+=1(a>b>0)上的任意一點(diǎn),F(xiàn)1,F(xiàn)2是它的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),有一動(dòng)點(diǎn)Q滿(mǎn)足=+,則動(dòng)點(diǎn)Q的軌跡方程是________. 【解析】 由題意知F1(-c,0),F(xiàn)2(c,0),設(shè)P(x0,y0),Q(x,y),由=+得(x,y)=(-c-x0,-y0)+(c-x0,-y0),即 所以又+=1,所以+=1. 【答案】?。? 歸納:相關(guān)點(diǎn)(代入)法的基本步驟 1.設(shè)點(diǎn):設(shè)被動(dòng)點(diǎn)坐標(biāo)為(x,y),主動(dòng)點(diǎn)坐標(biāo)為(x1,y1). 2.求關(guān)系式:求出兩個(gè)動(dòng)點(diǎn)坐標(biāo)之間的關(guān)系式 3.代換:將上述關(guān)系式代入已知曲線(xiàn)方程,便可得到所求動(dòng)點(diǎn)的軌跡方程. 。 學(xué)生通過(guò)對(duì)高考真題的解決,發(fā)現(xiàn)自己對(duì)知識(shí)的掌握情況。 學(xué)生通過(guò)對(duì)高考真題的解決,感受高考題的考察視角。 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的認(rèn)知結(jié)構(gòu)。 引導(dǎo)學(xué)生通過(guò)對(duì)基礎(chǔ)知識(shí)的逐點(diǎn)掃描,來(lái)澄清概念,加強(qiáng)理解。從而為后面的練習(xí)奠定基礎(chǔ). 在解題中注意引導(dǎo)學(xué)生自主分析和解決問(wèn)題,教師及時(shí)點(diǎn)撥從而提高學(xué)生的解題能力和興趣。 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的認(rèn)知結(jié)構(gòu)。 通過(guò)對(duì)考綱的解讀和分析。讓學(xué)生明確考試要求,做到有的放矢 由常見(jiàn)問(wèn)題的解決和總結(jié),使學(xué)生形成解題模塊,提高模式識(shí)別能力和解題效率。 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的認(rèn)知結(jié)構(gòu)。 引導(dǎo)學(xué)生對(duì)所學(xué)的知識(shí)進(jìn)行小結(jié),由利于學(xué)生對(duì)已有的知識(shí)結(jié)構(gòu)進(jìn)行編碼處理,加強(qiáng)理解記憶,提高解題技能。 環(huán)節(jié)三: 課堂小結(jié): 1.了解方程的曲線(xiàn)與曲線(xiàn)的方程的對(duì)應(yīng)關(guān)系. 2.了解解析幾何的基本思想和利用坐標(biāo)法研究幾何問(wèn)題的基本方法. 3.能夠根據(jù)所給條件選擇適當(dāng)?shù)姆椒ㄇ笄€(xiàn)的軌跡方程. 學(xué)生回顧,總結(jié). 引導(dǎo)學(xué)生對(duì)學(xué)習(xí)過(guò)程進(jìn)行反思,為在今后的學(xué)習(xí)中,進(jìn)行有效調(diào)控打下良好的基礎(chǔ)。 環(huán)節(jié)四: 課后作業(yè):學(xué)生版練與測(cè) 學(xué)生通過(guò)作業(yè)進(jìn)行課外反思,通過(guò)思考發(fā)散鞏固所學(xué)的知識(shí)。- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 教案 2019-2020年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-8 曲線(xiàn)與方程教案 2019 2020 年人教 高中數(shù)學(xué) 一輪 第八 平面 解析幾何 曲線(xiàn) 方程
鏈接地址:http://m.hcyjhs8.com/p-6181753.html