高一數(shù)學 初高中銜接教材 高次方程、分式方程、無理方程的解法課件.ppt
《高一數(shù)學 初高中銜接教材 高次方程、分式方程、無理方程的解法課件.ppt》由會員分享,可在線閱讀,更多相關(guān)《高一數(shù)學 初高中銜接教材 高次方程、分式方程、無理方程的解法課件.ppt(30頁珍藏版)》請在裝配圖網(wǎng)上搜索。
高次方程 分式方程 無理方程的解法 新高一數(shù)學 內(nèi)容概況 內(nèi)容概況 無理方程 高次方程 分式方程 一次或二次方程 整式方程 有理方程 因式分解 換元 兩邊同乘以最簡公分母 換元 兩邊平方 換元 一 高次方程的解法 1 什么是高次方程 整式方程中 未知數(shù)的次數(shù)大于或等于3的方程稱為高次方程 所以 例1 1 解方程 解 因式分解 高次方程的解法例題1 1 高次方程的解法例題1 2 因為 所以 所以 例1 2 解方程 解 因式分解 高次方程解法例1 3 例1 3 解方程 解 因式分解 所以 高次方程解法例2 1 例2 1 解方程 解 換元 令 則原方程可以化為 即 故 或 即 或 解得 高次方程解法例2 2 例2 2 解方程 解 原方程即 換元 令 原方程可化為 解得 或 即 或 高次方程解法例2 2 解得 高次方程解法例2 3 例2 3 解方程 解 原方程即 換元 令 原方程可化為 解得 或 即 舍去 解得 或 解得 解高次方程的一般步驟 1 整理方程 右邊化為0 2 將方程左邊因式分解 或者進行換元3 將方程轉(zhuǎn)化為若干個一次或二次方程4 寫出原方程的根 解高次方程的思路是 高次方程 一次或二次方程 因式分解 換元 高次方程解法方法提煉 1 可通過因式分解將高次方程轉(zhuǎn)化為一次或二次方程 2 可通過換元將高次方程轉(zhuǎn)化為一次或二次方程 3 n次方程最多有n個實數(shù)根 二 分式方程的解法 知識要點二 分式方程的解法 1 什么是分式方程 分母中含有未知數(shù)的方程叫分式方程 2 分式方程的解法 我們可通過將方程兩邊同乘以最簡公分母或者換元將分式方程轉(zhuǎn)化為整式方程 3 解分式方程的注意點 在解分式方程后都必需檢驗 這是因為從分式方程到整式方程的轉(zhuǎn)化有時不是等價的 分式方程解法例3 1 例3 1 解方程 解 兩邊同乘以最簡公分母 得 解得 經(jīng)檢驗 是原方程的解 分式方程解法例3 2 例3 2 解方程 化簡為 解 兩邊同乘以最簡公分母 得 解得 經(jīng)檢驗 是增根 原方程無解 為什么會產(chǎn)生增根 增根的定義 增根 在去分母 將分式方程轉(zhuǎn)化為整式方程的過程中出現(xiàn)的不適合于原方程的根 產(chǎn)生的原因 分式方程兩邊同乘以一個零因式后 所得的根是整式方程的根 而不是分式方程的根 所以我們解分式方程時一定要代入最簡公分母檢驗 使最簡公分母值為零的根 解分式方程的一般步驟 1 在方程的兩邊都乘以最簡公分母 約去分母 化成整式方程 2 解這個整式方程 3 把整式方程的解代入最簡公分母 如果最簡公分母的值不為0 則整式方程的解是原分式方程的解 否則 這個解不是原分式方程的解 必須舍去 4 寫出原方程的根 解分式方程的思路是 分式方程 整式方程 去分母 一化二解三檢驗 分式方程解法例4 例4解方程 解 令 原方程可化為 即 解得 所以 或 分式方程解法例4 即 或 解得 經(jīng)檢驗以上均為原方程的根 換元可以使運算變得簡便 分式方程解法例5 已知關(guān)于 的方程 的解為負數(shù) 的范圍 例5 求實數(shù) 解 左邊通分 所以 所以 且 解得 且 分式方程解法方法提煉 在分式方程兩邊同乘以最簡公分母 可把分式方程化為整式方程 2 換元可以使解方程的過程變得簡便 3 解分式方程時應注意檢驗 一化二解三檢驗 三 無理方程的解法 知識要點三 無理方程的解法 1 什么是無理方程 根號內(nèi)含有未知數(shù)的方程叫無理方程 2 無理方程的解法 我們可通過將方程兩邊平方或者換元將無理方程轉(zhuǎn)化為有理方程 3 解無理方程的注意點 在解無理方程后必需檢驗 這是因為從無理方程到有理方程的轉(zhuǎn)化有時不是等價的 無理方程解法例6 1 例6 1 解方程 解 解得 為增根 此題也可先解出方程 的根 再代回原方程檢驗 為什么會產(chǎn)生增根 無理方程解法例6 2 例6 2 解方程 解 移項 兩邊平方 化簡得 解得 或 經(jīng)檢驗 是原方程的根 是增根 無理方程解法例6 2 例6 2 解方程 此題也可令 轉(zhuǎn)化為 的一元二次方程 求解 即 解得 或 舍去 即 解得 無理方程解法例7 例7解方程 解 移項得 兩邊平方 整理得 再兩邊平方 化簡得 解得 經(jīng)檢驗 為原方程的根 是增根 方程一邊出現(xiàn)兩個根號時要先移項 解無理方程的一般步驟 1 將方程的兩邊平方 化成有理方程 有時要先移項 再平方2 解這個有理方程 3 把有理方程的解代入原方程檢驗4 寫出原方程的根 解無理方程的思路是 無理方程 有理方程 去根號 一化二解三檢驗 無理方程解法例8 例8解方程 解 令 則原方程化為 解得 舍去 所以 解得 經(jīng)檢驗 都是原方程的根 通過換元可將原方程化為關(guān)于 的一元二次方程 無理方程解法方法提煉 移項 平方可把無理方程化為有理方程 2 換元可以使解方程的過程變得簡便 3 解無理方程時應注意檢驗 一化二解三檢驗 三種方程高次 分式 無理方程的解法 3 一個思想 等價轉(zhuǎn)化的數(shù)學思想 2 一個方法 換元- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高一數(shù)學 初高中銜接教材 高次方程、分式方程、無理方程的解法課件 數(shù)學 高中 銜接 教材 方程 分式 無理方程 解法 課件
鏈接地址:http://m.hcyjhs8.com/p-7663381.html