《2012年山西省中考第一次適應性訓練數(shù)學學科試卷分析》由會員分享,可在線閱讀,更多相關《2012年山西省中考第一次適應性訓練數(shù)學學科試卷分析(48頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、單擊此處編輯母版標題樣式,單擊此處編輯母版文本樣式,第二級,第三級,第四級,第五級,*,山西省,2012,年中考第一次適應性訓練數(shù)學學科試卷分析,2012.3.26,盂縣二中 鄭建中,一、命題原則,二、試題與,試卷,三、,成績和問題,四、教學建議,一、命題原則,試題嚴格遵循,2012,年山西省中考科目說明,,以,九年義務教育數(shù)學課程標準,為依據(jù)進行命題。堅持“,有利于,貫徹國家的教育方針,推進中小學實施素質(zhì)教育;,有利于,體現(xiàn)九年義務教育的性質(zhì),全面提高數(shù)學教育質(zhì)量;,有利于,初中數(shù)學課程改革和教學改革,培養(yǎng)學生的創(chuàng)新精神和實踐能力;,有利于,減輕學生過重的負擔,促進學生主動、活潑、生動地學習
2、”的命題指導思想。,三個有利:,-,有利于全面推進素質(zhì)教育,-,有利于體現(xiàn)九年義務教育的性質(zhì),-,有利于中小學課程教學改革,培養(yǎng)學生的創(chuàng)新精神和實踐能力,減輕學生過重的負擔,促進學生生動、活潑、主動地學習數(shù)學。,試題的評價重視了對學生數(shù)學知識與技能學習的,結果,和,過程,的評價,也注重了數(shù)學學習在,數(shù)學思維能力,和,解決實際問題能力,方面的評價,.,適當命制了研究性試題和探究性試題,以考查學生,從數(shù)學角度發(fā)現(xiàn)問題、提出問題,以及,運用數(shù)學知識和方法探究和解決所提出問題的能力,。,(一)從試題結構上看,本試題共,26,個小題,分,I,、,兩卷,:,第,I,卷為選擇題,共,12,個小題,每小題,2
3、,分,共,24,分;,第,卷為填空題和解答題,其中填空題共,6,個小題,每小題,3,分,共,18,分;,解答題共,8,個小題,共,78,分,含計算、求解題、作圖題,信息分析題,應用題,猜想與證明題及探究題。,(二)從內(nèi)容上看,數(shù)與代數(shù)占,52,.,圖形與幾何占,35,.,統(tǒng)計與概率占,13,.,其中,綜合與實踐分散在上述三個領域的內(nèi)容之中,.,在,基礎知識,與,基本技能,、基本思想、基本活動經(jīng)驗(四基)、,教學活動過程,、,數(shù)學思考,及,解決問題能力,等方面都有所兼顧,關注它們之間的相互協(xié)調(diào)、支撐、補充,以形成有機的聯(lián)系,更多的關注了學生的探究性和研究性學習。,試題考查內(nèi)容領域及分值情況,內(nèi)容
4、,題型,題號,分值合計,所占比重,數(shù)與,代數(shù),選擇題,1,、,2,、,4,、,7,、,10,10,62,約,52%,填空題,13,、,14,、,18,9,解答題,19,、,22,、,24,、,26,43,空間,與,圖形,選擇題,3,、,5,、,8,、,11,、,12,10,42,約,35%,填空題,16,、,17,6,解答題,20,、,23,、,25,26,統(tǒng)計,與,概率,選擇題,6,、,9,4,16,約,13%,填空題,15,3,解答題,21,9,合計,26,120,100%,二、試題與試卷特點,新修訂的,課程標準,對學生的培養(yǎng)提出了“四基”目標,即基礎知識、基本技能、基本思想和基本活動經(jīng)驗
5、??v觀全卷對“四基”的考查覆蓋面廣,起點低且難易安排有序,層次合理,有助于考生較好地發(fā)揮思維水平??忌苯舆\用所學過的數(shù)學知識和方法進行“似曾相識”的解答,既可堅定考生考好數(shù)學的信心,又對今后的數(shù)學課堂教學起到良好的導向作用。,1,、試題依據(jù),課標,,體現(xiàn)基礎性,2,、突出了對數(shù)學思想方法的考查,數(shù)學思想,:,數(shù)形結合思想,(,10,題、,22,題、,26,題),整體思想,(,24,題),轉(zhuǎn)化思想,(,23,題,,25,題),方程思想,(,24,題,,26,(,2,)(,3,),函數(shù)思想,(,14,、,24,題、,26,(,1,),分類討論思想,(,22,題),運動變化思想,(,9,題、,26
6、,題),構造思想,(,12,題、,17,題),數(shù)學方法,:,配方法,(,22,題、,26,題(,1,)、,待定系數(shù)法,(,14,題)、,建模法,(,22,題、,24,題、,26,題)、,列表和畫樹狀圖法,(,15,題),等。,3,、試題背景具有現(xiàn)實性,突出對學生數(shù)學應用意識、創(chuàng)新思維的考查,試題的背景來源于學生所熟悉的現(xiàn)實生活,背景公平合理,時代感強。例如,:,第,5,題,,以常見的生活事例為背景,考查學生對事件的理解;,第,13,題,,以山西省糧食總產(chǎn)量的統(tǒng)計數(shù)據(jù)為背景,考查學生對科學記數(shù)法的掌握情況;,第,21,、,24,題,,考查學生應用數(shù)學解決實際問題的能力;,第,20,題,,設計為開
7、放性作圖,不僅靈活的考查了對稱的有關知識,而且較好的考查了學生發(fā)散思維和創(chuàng)新思維。,4,、重視數(shù)學語言的考查要求,數(shù)學語言是數(shù)學學習的工具,試題的一個明顯特點是對文字、符號、圖象、表格等有較多的考查要求。,試卷中出現(xiàn)了大量的文字語言,要求考生能快速準確地閱讀并理解題意(如,9,題、,24,題);,蘊含題中的多種數(shù)學符號語言的互相轉(zhuǎn)換要求,(如,22,、,24,、,25,、,26,題);,是對圖象、表格背景或者已知條件的閱讀要求(如,10,、,20,、,21,題等)。,5.,注重考察通性、通法和探究能力,整份試題淡化特殊技巧,注重考察通性、通法,在考查學生基礎知識綜合應用的同時,注重探究能力的考
8、查。,如第,26,題,主要考查學生運用運動變化的思想、探究動態(tài)型問題。將觀察能力、想象能力、邏輯推理的論證能力集于一題之中,學生只要運用相應的知識,如相似的判定和性質(zhì),直角三角形勾股定理的性質(zhì),即可解答此題。,6,、注重學生在圖形變換中的動手操作,動手實踐是課程標準強調(diào)的內(nèi)容之一,第,20,題,先呈現(xiàn)對稱圖形的原型,在給定條件之下,變換圖案,在觀察分析的基礎上畫出滿足題意的對稱圖形。這既是對學生在觀察圖形、正確分析圖形、動手操作能力的綜合考察,又是對學生關于軸對圖形和中心對稱圖形內(nèi)涵理解的深層次的考查。,7.,考查學生“多樣化”的思維方式,試題關注學生的個性和潛能,讓學生自主探索。,25,題,
9、學生從不同的角度觀察,在把握整體性結構的基礎上,放開思路,大膽探索,找出具有全等特征的三個三角形和相似特征的兩個三角形,在逆向推理的過程中找到了能使結論成立的對應的條件。從單向封閉型走向多維開放型,這種結論性開放型的試題,著眼于學生創(chuàng)新潛能的開發(fā),既考查了學生的逆向思維,又考查了學生思維的流暢性,廣闊性和靈活性。,三、主要成績和主要問題,(一)主要成績,1.,基礎知識、基本技能掌握較扎實,2.,獲取信息的能力有所提高,3.,應用數(shù)學解決問題的能力和獲取信息的能力有了明顯的提高,(二)主要問題,1.,部分基本知識掌握不靈活,2.,數(shù)學語言不夠規(guī)范,推理不夠嚴密,解題存在一定的隨意性,3.,思維不
10、夠靈活,能力仍顯薄弱,4.,推理能力和綜合應用數(shù)學知識解決問題的能力有待提高,學生答題中存在的具體問題分析如下:,19,題出現(xiàn)的錯誤,(,1,)化簡時完全平方公式和平方差公式混淆,致使化簡出錯。,(,2,)在平時練習分式化簡時,學生最容易把分式的計算和解分式方程混為一談,出現(xiàn)去分母的錯誤。,(,3,)不會表示一元一次不等式組的解集,跟二元一次方程組的解集混淆,導致計算錯誤。,(,4,)沒有化簡直接求值,計算較繁,導致錯誤。,20,題出現(xiàn)的錯誤,(,1,)審題不清,設計圖案時,黑白方塊的個數(shù)沒有保證相同,面積不等于,4,。,(,2,)軸對稱和中心對稱的概念混淆。,(,3,)受平時訓練的影響,存在
11、思維定勢。不能正確的理解題意,設計的圖案中出現(xiàn)了既是中心對稱圖形又是軸對稱圖形等圖案。,21,題出現(xiàn)的錯誤,(,1,)條形統(tǒng)計圖不規(guī)范,不用鉛筆作圖。,(,2,)審題不仔細,只是分別得到,C,級和,D,級的人數(shù),未能得到,C,級和,D,級的總?cè)藬?shù),(,3,)百分比書寫不規(guī)范,將,10%,寫成了,0.1,(,4,)沒有計算過程,直接寫出答案,22,題出現(xiàn)的錯誤,(,1,)運用配方法出錯。,(,2,)比較兩數(shù)大小學生想不到運用求差法,直接在圖形上比較,卻又找不準分點兒。,(,3,)拋物線圖形不規(guī)范。,(,4,)不能認真審題,題意弄不清導致錯誤。,23,題出現(xiàn)的錯誤,(,1,)想當然的認為,AED,
12、是直角三角形。,(,2,)推理過程不嚴密,條件不充分就得出結論。,例如:沒有證,ADE,是直角三角形就利用勾股定理計算邊,DE,的長。,24,題出現(xiàn)的錯誤,(,1,)沒有求出自變量的取值范圍就求利潤的對大值。,(,2,)第二問設出的未知數(shù)和題目中自變量用相同的字母表示。,(,3,)設未知量時不帶單位,,700-m,不帶括號就直接在后面寫單位。,25,題出現(xiàn)的錯誤,(,1,)推理不嚴密,邏輯性差,(,2,)圖形的分辨能力差,分解圖形的能力差,(,3,)證明兩個角相等只定性在三角形全等上,不會利用兩個三角形相似證明角相等。,26,題出現(xiàn)的錯誤,(,1,)對,P,、,Q,運動的起點分析的不清楚,導致
13、表示,PCQ,的底時出現(xiàn)錯誤表示。(,OQ=2t,),(,2,)大部分學生出現(xiàn)“前松后緊”現(xiàn)象,留給做,26,題的時間不多。,(,3,)不會利用相似三角形的比計算線段的長。,(,4,)當,PQ=OC,時,計算,t,的值不準確。,(,5,)邏輯思維性不強,過程凌亂。,(,6,)列比例式時,對應的線段不能準確代入,不能對應成比例。,(,7,)最后做答不全面,部分學生做完(,1,)、(,2,)題就把空白處寫滿,沒有答題空間。,學生答卷存在的主要問題可以歸納為:,1,對數(shù)學概念理解不透,。,如:第,2,題對平方根和算術平方根的概念混淆。,第,20,題中軸對稱和中心對稱的概念混淆;,例如第,17,題求線
14、段的長,學生對如何添加輔助線不知所措,有的學生即便添加了輔助線,也不會利用解直角三角形得知識計算線段的長,而有的學生好不容易列出方程卻解不對含有無理數(shù)的方程。第,19,題求不等式的解集,出錯人數(shù)很多,是我們教師預想不到的。第,24,題,能列出函數(shù)解析式但是化簡出錯率較高。,2,基礎不扎實,計算不過關,失分嚴重,例如第,12,題,學生沒有具備逆向思維的能力所以不能正確的解決圖象的旋轉(zhuǎn)問題,失分較嚴重。,思維能力差,不能靈活運用所學的知識解決問題。,幾何論證,能力差,,部分學生思路混亂,書寫不規(guī)范,推理,不嚴密,如,2,3,、,25,題,,推理不嚴密,,書寫格式不規(guī)范,幾何符號語言,運用,不準確,
15、。,審題能力差,不能準確的理解題目的要求,所答非所問,導致失分,如第,21,題(,4,),很多學生錯誤認為是分別求出,C,級和,D,級的學生人數(shù)。,第,26,題忽略了,Q,運動的起點,想當然的認為,Q,是從原點出發(fā),導致錯誤的認為,OQ=2t,致使后面的結果全部錯誤,失分率較高。,缺乏良好的書寫習慣,有的學生用中性筆畫圖致使有錯不能改,在試卷上亂涂亂畫,部分學生在解答題時隨便列上一些條件,直接得出結論,其實毫無因果關系;有的學生做解答題,省掉必要的過程與步驟,只寫得出的結果,表述毫無邏輯性,有的學生不注重過程的簡潔明了,致使,26,題一張半的答題頁都不夠用。,四、初三數(shù)學教學及復習建議,1.,
16、落實課標,立足教材,面向全體,夯實基礎,.,落實課標,切實轉(zhuǎn)變教學觀念,并落實到具體的,行為中去,立足教材,用好教材教,挖掘教材,面向全體,做好優(yōu)生、差生工作,防止兩極分化,夯實基礎,“,三基”的落實,是能力提高的前提,2.,能力立意,重視對學生運用所學的知識和技能分析問題和解決問題的能力的培養(yǎng),。,課堂教學要引導學生深層次地參與教學過程,讓學生在觀察、實驗的活動中,通過比較、分析、歸納、類比、抽象等思維過程,完成知識的猜想和證明,使學生既加深對知識的理解,又學習到創(chuàng)造的策略和方法,從而激起求知欲望和創(chuàng)新的熱情。,3,強化“過程”意識,重視知識的形成過程,.,培養(yǎng)學生規(guī)范化的學習習慣和嚴謹?shù)膶W習態(tài)度,.,4,、注重閱讀理解能力的培養(yǎng),加強讀圖能力和處理圖表信息能力。,5.,重視數(shù)學知識在實際中的應用,增強學生用數(shù)學的意識,培養(yǎng)學生分析問題和解決問題的能力。,一個具體問題體現(xiàn)了什么樣的數(shù)學思想,如何用數(shù)學知識、方法正確求解,也是本次中考試題對教與學提出的一個要求。,改變學生的學習方式,培養(yǎng)學生的學習能力和創(chuàng)新能力。,6.,注重學生創(chuàng)新能力的培養(yǎng),重視開展開放性,探索性的數(shù)學學習活動,重視