中學(xué)八級(jí)(上)期末數(shù)學(xué)試卷兩套合集附答案解析.docx
《中學(xué)八級(jí)(上)期末數(shù)學(xué)試卷兩套合集附答案解析.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《中學(xué)八級(jí)(上)期末數(shù)學(xué)試卷兩套合集附答案解析.docx(53頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2017年中學(xué)八年級(jí)(上)期末數(shù)學(xué)試卷兩套合集附答案解析 八年級(jí)(上)期末數(shù)學(xué)試卷 一、選擇題(本大題共10小題,每小題3分,共30分) 1.下列計(jì)劃圖形,不一定是軸對(duì)稱圖形的是( ?。? A.角 B.等腰三角形 C.長(zhǎng)方形 D.直角三角形 2.若分式有意義,則x滿足的條件是( ?。? A.x=1 B.x=﹣1 C.x≠1 D.x≠﹣1 3.下列運(yùn)算中正確的是( ?。? A.a(chǎn)3+a3=2a6 B.a(chǎn)2?a3=a6 C.(a2)3=a5 D.a(chǎn)2a5=a﹣3 4.分式與的最簡(jiǎn)公分母是( ?。? A.a(chǎn)b B.3ab C.3a2b2 D.3a2b6 5.如圖,點(diǎn)B、F、C、E在一條直線上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列選項(xiàng)中的一個(gè)條件是( ?。? A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC 6.若等腰三角形的兩邊長(zhǎng)分別是4和9,則它的周長(zhǎng)是( ) A.17 B.22 C.17或22 D.13 7.若x+m與2﹣x的乘積中不含x的一次項(xiàng),則實(shí)數(shù)m的值為( ) A.﹣2 B.2 C.0 D.1 8.從邊長(zhǎng)為a的大正方形紙板中挖去一個(gè)邊長(zhǎng)為b的小正方形紙板后,將其裁成四個(gè)相同的等腰梯形(如圖甲),然后拼成一個(gè)平行四邊形(如圖乙).那么通過(guò)計(jì)算兩個(gè)圖形陰影部分的面積,可以驗(yàn)證成立的公式為( ?。? A.a(chǎn)2﹣b2=(a﹣b)2 B.(a+b)2=a2+2ab+b2 C.(a﹣b)2=a2﹣2ab+b2 D.a(chǎn)2﹣b2=(a+b)(a﹣b) 9.三角形中,三個(gè)內(nèi)角的比為1:3:6,它的三個(gè)外角的比為( ) A.1:3:6 B.6:3:1 C.9:7:4 D.3:5:2 10.如圖,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN經(jīng)過(guò)點(diǎn)O,與AB,AC相交于點(diǎn)M,N,且MN∥BC,則BM,CN之間的關(guān)系是( ?。? A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.BM﹣CN=2MN 二、填空題(本大題共6小題,每小題3分,共18分) 11.禽流感病毒的形狀一般為球形,直徑大約為0.000000102m,該直徑用科學(xué)記數(shù)法表示為 m. 12.一個(gè)n邊形的內(nèi)角和是1260,那么n= ?。? 13.如圖是兩個(gè)全等三角形,圖中的字母表示三角形的邊長(zhǎng),則∠1等于多少度? ?。? 14.已知4y2+my+1是完全平方式,則常數(shù)m的值是 ?。? 15.若分式方程:3無(wú)解,則k= ?。? 16.如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點(diǎn)E、F,若點(diǎn)D為底邊BC的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為 ?。? 三、解答題(本大題共8小題,共72分) 17.分解因式: (1)6xy2﹣9x2y﹣y3; (2)16x4﹣1. 18.先化簡(jiǎn),再求值:(+)?(+),其中x2+y2=17,(x﹣y)2=9. 19.如圖,點(diǎn)E在AB上,∠CEB=∠B,∠1=∠2=∠3,求證:CD=CA. 20.如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3). (1)在圖中作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1; (2)在y軸上找出一點(diǎn)P,使得PA+PB的值最小,直接寫出點(diǎn)P的坐標(biāo); (3)在平面直角坐標(biāo)系中,找出一點(diǎn)A2,使△A2BC與△ABC關(guān)于直線BC對(duì)稱,直接寫出點(diǎn)A2的坐標(biāo). 21.甲、乙、丙三個(gè)登山愛(ài)好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動(dòng). (1)1月1日甲與乙同時(shí)開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,結(jié)果甲比乙早15分鐘到達(dá)頂峰.求甲的平均攀登速度是每分鐘多少米? (2)1月6日甲與丙去攀登另一座h米高的山,甲保持第(1)問(wèn)中的速度不變,比丙晚出發(fā)0.5小時(shí),結(jié)果兩人同時(shí)到達(dá)頂峰,問(wèn)甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示) 22.如圖,在△ABC中,AD是它的角平分線,G是AD上的一點(diǎn),BG,CG分別平分∠ABC,∠ACB,GH⊥BC,垂足為H,求證: (1)∠BGC=90+∠BAC; (2)∠1=∠2. 23.如圖1,我們?cè)?017年1月的日歷中標(biāo)出一個(gè)十字星,并計(jì)算它的“十字差”(將十字星左右兩數(shù),上下兩數(shù)分別相乘再將所得的積作差,稱為該十字星的“十字差”).該十字星的十字差為1012﹣418=48,再選擇其他位置的十字星,可以發(fā)現(xiàn)“十字差”仍為48. (1)如圖2,將正整數(shù)依次填入5列的長(zhǎng)方形數(shù)表中,探究不同位置十字星的“十字差”,可以發(fā)現(xiàn)相應(yīng)的“十字差”也是一個(gè)定值,則這個(gè)定值為 . (2)若將正整數(shù)依次填入k列的長(zhǎng)方形數(shù)表中(k≥3),繼續(xù)前面的探究,可以發(fā)現(xiàn)相應(yīng)“十字差”為與列數(shù)k有關(guān)的定值,請(qǐng)用k表示出這個(gè)定值,并證明你的結(jié)論. (3)如圖3,將正整數(shù)依次填入三角形的數(shù)表中,探究不同十字星的“十字差”,若某個(gè)十字星中心的數(shù)在第32行,且其相應(yīng)的“十字差”為2017,則這個(gè)十字星中心的數(shù)為 ?。ㄖ苯訉懗鼋Y(jié)果). 24.△ABC是等邊三角形,點(diǎn)D、E分別在邊AB、BC上,CD、AE交于點(diǎn)F,∠AFD=60. (1)如圖1,求證:BD=CE; (2)如圖2,F(xiàn)G為△AFC的角平分線,點(diǎn)H在FG的延長(zhǎng)線上,HG=CD,連接HA、HC,求證:∠AHC=60; (3)在(2)的條件下,若AD=2BD,F(xiàn)H=9,求AF長(zhǎng). 參考答案與試題解析 一、選擇題(本大題共10小題,每小題3分,共30分) 1.下列計(jì)劃圖形,不一定是軸對(duì)稱圖形的是( ?。? A.角 B.等腰三角形 C.長(zhǎng)方形 D.直角三角形 【考點(diǎn)】軸對(duì)稱圖形. 【分析】根據(jù)軸對(duì)稱圖形的概念求解. 【解答】解:A、角一定是軸對(duì)稱圖形,不符合題意,本選項(xiàng)錯(cuò)誤; B、等腰三角形一定是軸對(duì)稱圖形,不符合題意,本選項(xiàng)錯(cuò)誤; C、長(zhǎng)方形一定是軸對(duì)稱圖形,不符合題意,本選項(xiàng)錯(cuò)誤; D、直角三角形不一定是軸對(duì)稱圖形,符合題意,本選項(xiàng)正確. 故選D. 2.若分式有意義,則x滿足的條件是( ?。? A.x=1 B.x=﹣1 C.x≠1 D.x≠﹣1 【考點(diǎn)】分式有意義的條件. 【分析】根據(jù)分式有意義,分母不等于0列不等式求解即可. 【解答】解:由題意得,x﹣1≠0, 解得x≠1. 故選C. 3.下列運(yùn)算中正確的是( ) A.a(chǎn)3+a3=2a6 B.a(chǎn)2?a3=a6 C.(a2)3=a5 D.a(chǎn)2a5=a﹣3 【考點(diǎn)】同底數(shù)冪的除法;合并同類項(xiàng);同底數(shù)冪的乘法;冪的乘方與積的乘方;負(fù)整數(shù)指數(shù)冪. 【分析】根據(jù)同底數(shù)冪的乘除法則、冪的乘方及積的乘方法則,合并同類項(xiàng),負(fù)整數(shù)指數(shù)冪結(jié)合各項(xiàng)進(jìn)行判斷即可. 【解答】解:A、a3+a3=2a3,原式計(jì)算錯(cuò)誤,故本項(xiàng)錯(cuò)誤; B、a2?a3=a5,原式計(jì)算錯(cuò)誤,故本項(xiàng)錯(cuò)誤; C.(a2)3=a5,原式計(jì)算正確,故本項(xiàng)錯(cuò)誤; D.a(chǎn)2a5=a﹣3,原式計(jì)算正確,故本項(xiàng)正確; 故選D. 4.分式與的最簡(jiǎn)公分母是( ?。? A.a(chǎn)b B.3ab C.3a2b2 D.3a2b6 【考點(diǎn)】最簡(jiǎn)公分母. 【分析】先找系數(shù)的最小公倍數(shù)3,再找字母的最高次冪. 【解答】解:分式與的最簡(jiǎn)公分母是3a2b2, 故選C. 5.如圖,點(diǎn)B、F、C、E在一條直線上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列選項(xiàng)中的一個(gè)條件是( ) A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC 【考點(diǎn)】全等三角形的判定. 【分析】根據(jù)“SAS”可添加BF=EC使△ABC≌△DEF. 【解答】解:∵AB∥ED,AB=DE, ∴∠B=∠E, ∴當(dāng)BF=EC時(shí), 可得BC=EF, 可利用“SAS”判斷△ABC≌△DEF. 故選A. 6.若等腰三角形的兩邊長(zhǎng)分別是4和9,則它的周長(zhǎng)是( ) A.17 B.22 C.17或22 D.13 【考點(diǎn)】等腰三角形的性質(zhì);三角形三邊關(guān)系. 【分析】題目給出等腰三角形有兩條邊長(zhǎng)為7和3,而沒(méi)有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗(yàn)證能否組成三角形. 【解答】解:當(dāng)腰為9時(shí),周長(zhǎng)=9+9+4=22; 當(dāng)腰長(zhǎng)為4時(shí),根據(jù)三角形三邊關(guān)系可知此情況不成立; 根據(jù)三角形三邊關(guān)系可知:等腰三角形的腰長(zhǎng)只能為9,這個(gè)三角形的周長(zhǎng)是22. 故選:B. 7.若x+m與2﹣x的乘積中不含x的一次項(xiàng),則實(shí)數(shù)m的值為( ?。? A.﹣2 B.2 C.0 D.1 【考點(diǎn)】多項(xiàng)式乘多項(xiàng)式. 【分析】根據(jù)多項(xiàng)式乘以多項(xiàng)式的法則,可表示為(a+b)(m+n)=am+an+bm+bn,計(jì)算即可. 【解答】解:根據(jù)題意得: (x+m)(2﹣x)=2x﹣x2+2m﹣mx, ∵x+m與2﹣x的乘積中不含x的一次項(xiàng), ∴m=2; 故選B. 8.從邊長(zhǎng)為a的大正方形紙板中挖去一個(gè)邊長(zhǎng)為b的小正方形紙板后,將其裁成四個(gè)相同的等腰梯形(如圖甲),然后拼成一個(gè)平行四邊形(如圖乙).那么通過(guò)計(jì)算兩個(gè)圖形陰影部分的面積,可以驗(yàn)證成立的公式為( ?。? A.a(chǎn)2﹣b2=(a﹣b)2 B.(a+b)2=a2+2ab+b2 C.(a﹣b)2=a2﹣2ab+b2 D.a(chǎn)2﹣b2=(a+b)(a﹣b) 【考點(diǎn)】等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì). 【分析】分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗(yàn)證成立的公式. 【解答】解:陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b). 即:a2﹣b2=(a+b)(a﹣b). 所以驗(yàn)證成立的公式為:a2﹣b2=(a+b)(a﹣b). 故選:D. 9.三角形中,三個(gè)內(nèi)角的比為1:3:6,它的三個(gè)外角的比為( ?。? A.1:3:6 B.6:3:1 C.9:7:4 D.3:5:2 【考點(diǎn)】三角形的外角性質(zhì);三角形內(nèi)角和定理. 【分析】由三角形中,三個(gè)內(nèi)角的比為1:3:6,根據(jù)三角形的外角的性質(zhì),即可求得它的三個(gè)外角的比. 【解答】解:∵三角形中,三個(gè)內(nèi)角的比為1:3:6, ∴它的三個(gè)外角的比為:(3+6):(1+6):(1+3)=9:7:4. 故選:C. 10.如圖,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN經(jīng)過(guò)點(diǎn)O,與AB,AC相交于點(diǎn)M,N,且MN∥BC,則BM,CN之間的關(guān)系是( ?。? A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.BM﹣CN=2MN 【考點(diǎn)】等腰三角形的判定與性質(zhì);平行線的性質(zhì). 【分析】只要證明BM=OM,ON=CN,即可解決問(wèn)題. 【解答】證明:∵ON∥BC, ∴∠MOC=∠OCD ∵CO平分∠ACD, ∴∠ACO=∠DCO, ∴∠NOC=∠OCN, ∴CN=ON, ∵ON∥BC, ∴∠MOB=∠OBD ∵BO平分∠ABC, ∴∠MBO=∠CBO, ∴∠MBO=∠MOB, ∴OM=BM ∵OM=ON+MN,OM=BM,ON=CN, ∴BM=CN+MN, ∴MN=BM﹣CN. 故選B. 二、填空題(本大題共6小題,每小題3分,共18分) 11.禽流感病毒的形狀一般為球形,直徑大約為0.000000102m,該直徑用科學(xué)記數(shù)法表示為 1.0210﹣7 m. 【考點(diǎn)】科學(xué)記數(shù)法—表示較小的數(shù). 【分析】絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定. 【解答】解:0.000000102=1.0210﹣7. 故答案為:1.0210﹣7. 12.一個(gè)n邊形的內(nèi)角和是1260,那么n= 9 . 【考點(diǎn)】多邊形內(nèi)角與外角. 【分析】根據(jù)多邊形的內(nèi)角和公式:(n﹣2).180 (n≥3)且n為整數(shù))可得方程:(n﹣2)180=1260,再解方程即可. 【解答】解:由題意得:(n﹣2)180=1260, 解得:n=9, 故答案為:9. 13.如圖是兩個(gè)全等三角形,圖中的字母表示三角形的邊長(zhǎng),則∠1等于多少度? 66?。? 【考點(diǎn)】全等三角形的性質(zhì). 【分析】根據(jù)圖形和親弟弟三角形的性質(zhì)得出∠1=∠C,∠D=∠A=54,∠E=∠B=60,根據(jù)三角形內(nèi)角和定理求出即可. 【解答】解: ∵△ABC≌△DEF, ∴∠1=∠C,∠D=∠A=54,∠E=∠B=60, ∴∠1=180﹣∠E﹣∠F=66, 故答案為:66. 14.已知4y2+my+1是完全平方式,則常數(shù)m的值是 4 . 【考點(diǎn)】完全平方式. 【分析】利用完全平方公式的結(jié)構(gòu)特征確定出m的值即可. 【解答】解:∵4y2+my+1是完全平方式, ∴m=4, 故答案為:4 15.若分式方程:3無(wú)解,則k= 3或1 . 【考點(diǎn)】分式方程的解. 【分析】分式方程無(wú)解的條件是:去分母后所得整式方程無(wú)解,或解這個(gè)整式方程得到的解使原方程的分母等于0. 【解答】解:方程去分母得:3(x﹣3)+2﹣kx=﹣1, 整理得(3﹣k)x=6, 當(dāng)整式方程無(wú)解時(shí),3﹣k=0即k=3, 當(dāng)分式方程無(wú)解時(shí),x=3,此時(shí)3﹣k=2,k=1, 所以k=3或1時(shí),原方程無(wú)解. 故答案為:3或1. 16.如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點(diǎn)E、F,若點(diǎn)D為底邊BC的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為 8 . 【考點(diǎn)】軸對(duì)稱﹣?zhàn)疃搪肪€問(wèn)題;線段垂直平分線的性質(zhì);等腰三角形的性質(zhì);勾股定理. 【分析】連接AD交EF與點(diǎn)M′,連結(jié)AM,由線段垂直平分線的性質(zhì)可知AM=MB,則BM+DM=AM+DM,故此當(dāng)A、M、D在一條直線上時(shí),MB+DM有最小值,然后依據(jù)要三角形三線合一的性質(zhì)可證明AD為△ABC底邊上的高線,依據(jù)三角形的面積為12可求得AD的長(zhǎng). 【解答】解:連接AD交EF與點(diǎn)M′,連結(jié)AM. ∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn), ∴AD⊥BC, ∴S△ABC=BC?AD=4AD=12,解得AD=6, ∵EF是線段AB的垂直平分線, ∴AM=BM. ∴BM+MD=MD+AM. ∴當(dāng)點(diǎn)M位于點(diǎn)M′處時(shí),MB+MD有最小值,最小值6. ∴△BDM的周長(zhǎng)的最小值為DB+AD=2+6=8. 三、解答題(本大題共8小題,共72分) 17.分解因式: (1)6xy2﹣9x2y﹣y3; (2)16x4﹣1. 【考點(diǎn)】提公因式法與公式法的綜合運(yùn)用. 【分析】(1)原式提取公因式,再利用完全平方公式分解即可; (2)原式利用平方差公式分解即可. 【解答】解:(1)原式=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2; (2)原式=(4x2+1)(4x2﹣1)=(4x2+1)(2x+1)(2x﹣1). 18.先化簡(jiǎn),再求值:(+)?(+),其中x2+y2=17,(x﹣y)2=9. 【考點(diǎn)】分式的化簡(jiǎn)求值. 【分析】先將原式進(jìn)行化簡(jiǎn),然后根據(jù)x2+y2=17,(x﹣y)2=9求出x+y和xy的值并代入求解即可. 【解答】解:∵x2+y2=17,(x﹣y)2=9, ∴2xy=x2+y2﹣(x﹣y)2=17﹣9=8, ∴(x+y)2=x2+y2+2xy=17+8=25, ∴x+y=5,xy=4, ∴原式= = = =. 19.如圖,點(diǎn)E在AB上,∠CEB=∠B,∠1=∠2=∠3,求證:CD=CA. 【考點(diǎn)】全等三角形的判定與性質(zhì). 【分析】由∠1=∠3、∠CFD=∠EFA知∠D=∠A,由∠1=∠2知∠DCE=∠ACB,由∠CEB=∠B知CE=CB,從而證△DCE≌△ACB得CD=CA. 【解答】證明:如圖, ∵∠1=∠3,∠CFD=∠EFA, ∴180﹣∠1﹣∠CFD=180﹣∠3﹣∠EFA,即∠D=∠A, ∵∠1=∠2, ∴∠1+∠ACE=∠2+∠ACE,即∠DCE=∠ACB, 又∵∠CEB=∠B, ∴CE=CB, 在△DCE和△ACB中, ∵, ∴△DCE≌△ACB(AAS), ∴CD=CA. 20.如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3). (1)在圖中作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1; (2)在y軸上找出一點(diǎn)P,使得PA+PB的值最小,直接寫出點(diǎn)P的坐標(biāo); (3)在平面直角坐標(biāo)系中,找出一點(diǎn)A2,使△A2BC與△ABC關(guān)于直線BC對(duì)稱,直接寫出點(diǎn)A2的坐標(biāo). 【考點(diǎn)】作圖﹣軸對(duì)稱變換;軸對(duì)稱﹣?zhàn)疃搪肪€問(wèn)題. 【分析】(1)先作出各點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),再順次連接即可; (2)連接AB1交y軸于點(diǎn)P,利用待定系數(shù)法求出直線AB1的解析式,進(jìn)而可得出P點(diǎn)坐標(biāo); (3)找出點(diǎn)A關(guān)于直線BC的對(duì)稱點(diǎn),并寫出其坐標(biāo)即可. 【解答】解:(1)如圖所示; (2)設(shè)直線AB1的解析式為y=kx+b(k≠0), ∵A(﹣1,5),B1(1,0), ∴,解得, ∴直線AB1的解析式為:y=﹣x+, ∴P(0,2.5); (3)如圖所示,A2(﹣6,0). 21.甲、乙、丙三個(gè)登山愛(ài)好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動(dòng). (1)1月1日甲與乙同時(shí)開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,結(jié)果甲比乙早15分鐘到達(dá)頂峰.求甲的平均攀登速度是每分鐘多少米? (2)1月6日甲與丙去攀登另一座h米高的山,甲保持第(1)問(wèn)中的速度不變,比丙晚出發(fā)0.5小時(shí),結(jié)果兩人同時(shí)到達(dá)頂峰,問(wèn)甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示) 【考點(diǎn)】分式方程的應(yīng)用. 【分析】(1)根據(jù)題意可以列出相應(yīng)的分式方程,從而可以求得甲的平均攀登速度; (2)根據(jù)(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本題. 【解答】解:(1)設(shè)乙的速度為x米/分鐘, , 解得,x=10, 經(jīng)檢驗(yàn),x=10是原分式方程的解, ∴1.2x=12, 即甲的平均攀登速度是12米/分鐘; (2)設(shè)丙的平均攀登速度是y米/分, , 化簡(jiǎn),得 y=, ∴甲的平均攀登速度是丙的:倍, 即甲的平均攀登速度是丙的倍. 22.如圖,在△ABC中,AD是它的角平分線,G是AD上的一點(diǎn),BG,CG分別平分∠ABC,∠ACB,GH⊥BC,垂足為H,求證: (1)∠BGC=90+∠BAC; (2)∠1=∠2. 【考點(diǎn)】三角形內(nèi)角和定理. 【分析】(1)由三角形內(nèi)角和定理可知∠ABC+∠ACB=180﹣∠BAC,然后利用角平分線的性質(zhì)即可求出∠BGC=90+∠BAC. (2)由于AD是它的角平分線,所以∠BAD=∠CAD,然后根據(jù)圖形可知:∠1=∠BAD+∠ABG,∠2=90﹣∠GCH,最后根據(jù)三角形的內(nèi)角和定理以及外角的性質(zhì)即可求出答案. 【解答】解:(1)由三角形內(nèi)角和定理可知:∠ABC+∠ACB=180﹣∠BAC, ∵BG,CG分別平分∠ABC,∠ACB, ∠GBC=∠ABC,∠GCB=∠ACB ∴∠GBC+∠GCB=(∠ABC+∠ACB)==90﹣∠BAC ∴∠BGC=180﹣(∠GBC+∠GCB)=180﹣(∠ABC+∠ACB)=90+∠BAC; (2)∵AD是它的角平分線, ∴∠BAD=∠CAD ∴∠1=∠BAD+∠ABG, ∵GH⊥BC, ∴∠GHC=90 ∴∠2=90﹣∠GCH =90﹣∠ACB =90﹣ =∠DAC+∠ADC ∵∠ADC=∠ABC+∠BAD, ∴∠ADC=∠ABC+∠∠BAD =∠ABG+∠BAD, ∴∠2=∠DAC+∠ADC =∠BAD+∠BAD+∠ABG =∠BAD+∠ABG, ∴∠1=∠2, 23.如圖1,我們?cè)?017年1月的日歷中標(biāo)出一個(gè)十字星,并計(jì)算它的“十字差”(將十字星左右兩數(shù),上下兩數(shù)分別相乘再將所得的積作差,稱為該十字星的“十字差”).該十字星的十字差為1012﹣418=48,再選擇其他位置的十字星,可以發(fā)現(xiàn)“十字差”仍為48. (1)如圖2,將正整數(shù)依次填入5列的長(zhǎng)方形數(shù)表中,探究不同位置十字星的“十字差”,可以發(fā)現(xiàn)相應(yīng)的“十字差”也是一個(gè)定值,則這個(gè)定值為 24 . (2)若將正整數(shù)依次填入k列的長(zhǎng)方形數(shù)表中(k≥3),繼續(xù)前面的探究,可以發(fā)現(xiàn)相應(yīng)“十字差”為與列數(shù)k有關(guān)的定值,請(qǐng)用k表示出這個(gè)定值,并證明你的結(jié)論. (3)如圖3,將正整數(shù)依次填入三角形的數(shù)表中,探究不同十字星的“十字差”,若某個(gè)十字星中心的數(shù)在第32行,且其相應(yīng)的“十字差”為2017,則這個(gè)十字星中心的數(shù)為 975 (直接寫出結(jié)果). 【考點(diǎn)】規(guī)律型:數(shù)字的變化類. 【分析】(1)根據(jù)題意求出相應(yīng)的“十字差”,即可確定出所求定值; (2)定值為k2﹣1=(k+1)(k﹣1),理由為:設(shè)十字星中心的數(shù)為x,表示出十字星左右兩數(shù),上下兩數(shù),進(jìn)而表示出十字差,化簡(jiǎn)即可得證; (3)設(shè)正中間的數(shù)為a,則上下兩個(gè)數(shù)為a﹣62,a+64,左右兩個(gè)數(shù)為a﹣1,a+1,根據(jù)相應(yīng)的“十字差”為2017求出a的值即可. 【解答】解:(1)根據(jù)題意得:68﹣212=48﹣24=24; 故答案為:24; (2)定值為k2﹣1=(k+1)(k﹣1); 證明:設(shè)十字星中心的數(shù)為x,則十字星左右兩數(shù)分別為x﹣1,x+1,上下兩數(shù)分別為x﹣k,x+k(k≥3), 十字差為(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1, 故這個(gè)定值為k2﹣1=(k+1)(k﹣1); (3)設(shè)正中間的數(shù)為a,則上下兩個(gè)數(shù)為a﹣62,a+64,左右兩個(gè)數(shù)為a﹣1,a+1, 根據(jù)題意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2017, 解得:a=975. 故答案為:975. 24.△ABC是等邊三角形,點(diǎn)D、E分別在邊AB、BC上,CD、AE交于點(diǎn)F,∠AFD=60. (1)如圖1,求證:BD=CE; (2)如圖2,F(xiàn)G為△AFC的角平分線,點(diǎn)H在FG的延長(zhǎng)線上,HG=CD,連接HA、HC,求證:∠AHC=60; (3)在(2)的條件下,若AD=2BD,F(xiàn)H=9,求AF長(zhǎng). 【考點(diǎn)】全等三角形的判定與性質(zhì);等邊三角形的性質(zhì). 【分析】(1)根據(jù)等邊三角形的性質(zhì)得出AB=BC,∠BAC=∠C=∠ABE=60,根據(jù)SAS推出△ABE≌△BCD,即可證得結(jié)論; (2)根據(jù)角平分線的性質(zhì)定理證得CM=CN,利用∠CEM=∠ACE+∠CAE=60+∠CAE,∠CGN=∠AFH+∠CAE=60+∠CAE,得出∠CEM=∠CGN,然后根據(jù)AAS證得△ECM≌△GCN,得出CG=CE,EM=GN,∠ECM=∠GCN,進(jìn)而證得△AMC≌△HNC,得出∠ACM=∠HCN,AC=HC,從而證得△ACH是等邊三角形,證得∠AHC=60; (3)在FH上截取FK=FC,得出△FCK是等邊三角形,進(jìn)一步得出FC=KC=FK,∠ACF=∠HCK,證得△AFC≌△HKC得出AF=HK,從而得到HF=AF+FC=9,由AD=2BD可知AG=2CG,再由=,根據(jù)等高三角形面積比等于底的比得出===2,再由AF+FC=9求得. 【解答】解:(1)如圖1,∵△ABC是等邊三角形, ∴∠B=∠ACE=60BC=AC, ∵∠AFD=∠CAE+∠ACD=60∠BCD+∠ACD=∠ACB=60, ∴∠BCD=∠CAE, 在△ABE和△BCD中, ∴△ABE≌△BCD(ASA), ∴BD=CE; (2)如圖2,作CM⊥AE交AE的延長(zhǎng)線于M,作CN⊥HF于N, ∵∠EFC=∠AFD=60 ∴∠AFC=120, ∵FG為△AFC的角平分線, ∴∠CFH=∠AFH=60, ∴∠CFH=∠CFE=60, ∵CM⊥AE,CN⊥HF, ∴CM=CN, ∵∠CEM=∠ACE+∠CAE=60+∠CAE,∠CGN=∠AFH+∠CAE=60+∠CAE, ∴∠CEM=∠CGN, 在△ECM和△GCN中 ∴△ECM≌△GCN(AAS), ∴CE=CG,EM=GN,∠ECM=∠GCN, ∴∠MCN=∠ECG=60, ∵△ABE≌△BCD, ∵AE=CD, ∵HG=CD, ∴AE=HG, ∴AE+EM=HG+GN,即AM=HN, 在△AMC和△HNC中 ∴△AMC≌△HNC(SAS), ∴∠ACM=∠HCN,AC=HC, ∴∠ACM﹣∠ECM=∠HCN﹣∠GCN,即∠ACE=∠HCG=60, ∴△ACH是等邊三角形, ∴∠AHC=60; (3)如圖3,在FH上截取FK=FC, ∵∠HFC=60, ∴△FCK是等邊三角形, ∴∠FKC=60,F(xiàn)C=KC=FK, ∵∠ACH=60, ∴∠ACF=∠HCK, 在△AFC和△HKC中 ∴△AFC≌△HKC(SAS), ∴AF=HK, ∴HF=AF+FC=9, ∵AD=2BD,BD=CE=CG,AB=AC, ∴AG=2CG, ∴==, 作GW⊥AE于W,GQ⊥DC于Q, ∵FG為△AFC的角平分線, ∴GW=GQ, ∵===, ∴AF=2CF, ∴AF=6. 八年級(jí)(上)期末數(shù)學(xué)試卷 一、選擇題(本大題共8小題,每小題3分,共24分) 1.下列四個(gè)圖案,其中是軸對(duì)稱圖形的是( ?。? A. B. C. D. 2.在平面直角坐標(biāo)系中,點(diǎn)M(﹣2,3)在( ?。? A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.下列四組線段中,可以構(gòu)成直角三角形的是( ?。? A.3,5,6 B.2,3,4 C.1,,2 D.3,4, 4.如圖,∠C=∠D=90,AC=AD,那么△ABC與△ABD全等的理由是( ?。? A.HL B.SAS C.ASA D.AAS 5.在,﹣,,這四個(gè)數(shù)中,無(wú)理數(shù)有( ?。? A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 6.已知地球上海洋面積約為361000000km2,361000000用科學(xué)記數(shù)法可以表示為( ?。? A.36.1107 B.3.61107 C.3.61108 D.3.61109 7.在平面直角坐標(biāo)系中,把直線y=2x﹣3沿y軸向上平移2個(gè)單位后,得到的直線的函數(shù)表達(dá)式為( ?。? A.y=2x+2 B.y=2x﹣5 C.y=2x+1 D.y=2x﹣1 8.在一次800米的長(zhǎng)跑比賽中,甲、乙兩人所跑的路程s(米)與各自所用時(shí)間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,則下列說(shuō)法正確的是( ?。? A.甲的速度隨時(shí)間的增加而增大 B.乙的平均速度比甲的平均速度大 C.在起跑后第180秒時(shí),兩人相遇 D.在起跑后第50秒時(shí),乙在甲的前面 二、填空題(本大題共10小題,每小題3分,共30分) 9.9的算術(shù)平方根是 ?。? 10.P(﹣3,2)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是 ?。? 11.已知△ABC≌△DEF,若∠B=40,∠D=30,則∠F= ?。? 12.如圖,在△ABC中,∠B=40,BC邊的垂直平分線交BC于D,交AB于E,若CE平分∠ACB,則∠A= . 13.已知△ABC的三邊長(zhǎng)分別為5、12、13,則最長(zhǎng)邊上的中線長(zhǎng)為 ?。? 14.已知一次函數(shù)y=2x+b﹣1,b= 時(shí),函數(shù)圖象經(jīng)過(guò)原點(diǎn). 15.已知點(diǎn)A(3,y1)、B(2,y2)在一次函數(shù)y=﹣x+3的圖象上,則y1,y2的大小關(guān)系是y1 y2.(填>、=或<) 16.直線y=x+6與x軸、y軸圍成的三角形面積為 ?。ㄆ椒絾挝唬? 17.如圖,已知一次函數(shù)y=2x+b和y=kx﹣3(k≠0)的圖象交于點(diǎn)P(4,﹣6),則二元一次方程組的解是 ?。? 18.如圖,△AOB是等腰三角形,OA=OB,點(diǎn)B在x軸的正半軸上,點(diǎn)A的坐標(biāo)是(1,1),則點(diǎn)B的坐標(biāo)是 ?。? 三、解答題(本大題共10小題,共96分) 19.(1)計(jì)算:﹣(1+)0+ (2)求x的值:(x+4)3=﹣64. 20.如圖:點(diǎn)C,D在AB上,且AC=BD,AE=FB,DE=FC.求證:△ADE≌△BCF. 21.如圖,AC=AD,線段AB經(jīng)過(guò)線段CD的中點(diǎn)E,求證:BC=BD. 22.圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,點(diǎn)A和點(diǎn)B在小正方形的頂點(diǎn)上. (1)在圖1中畫出△ABC(點(diǎn)C在小正方形的頂點(diǎn)上),使△ABC為直角三角形(畫一個(gè)即可); (2)在圖2中畫出△ABD(點(diǎn)D在小正方形的頂點(diǎn)上),使△ABD為等腰三角形(畫一個(gè)即可). 23.如圖,一架2.5米長(zhǎng)的梯子AB,斜靠在一豎直的墻AC上,這時(shí)梯子的頂端A到墻底端C的距離為2.4米,如果梯子的底端B沿CB向外平移0.8米至B1,求梯子頂端A沿墻下滑的距離AA1的長(zhǎng)度. 24.已知一次函數(shù)y1=kx+b與函數(shù)y=﹣2x的圖象平行,且與x軸的交點(diǎn)A的橫坐標(biāo)為2. (1)求一次函數(shù)y1=kx+b的表達(dá)式; (2)在給定的網(wǎng)格中,畫出函數(shù)一次函數(shù)y2=x+1的圖象,并求出一次函數(shù)y1=kx+b與y=x+1圖象的交點(diǎn)坐標(biāo); (3)根據(jù)圖象直接寫出,當(dāng)x取何值時(shí),y1>y2. 25.如圖,△ABC是等邊三角形,點(diǎn)D、E分別是BC、CA延長(zhǎng)線上的點(diǎn),且CD=AE,DA的延長(zhǎng)線交BE于點(diǎn)F. (1)求證:△ABE≌△CAD; (2)求∠BFD的度數(shù). 26.某工廠每天生產(chǎn)A、B兩種款式的布制環(huán)保購(gòu)物袋共4500個(gè),已知A種購(gòu)物袋成本2元/個(gè),售價(jià)2.3元/個(gè);B種購(gòu)物袋成本3元/個(gè),售價(jià)3.5元/個(gè).設(shè)每天生產(chǎn)A種購(gòu)物袋x個(gè),該工廠每天共需成本y元,共獲利w元. (1)求出y與x的函數(shù)表達(dá)式; (2)求出w與x的函數(shù)表達(dá)式; (3)如果該廠每天最多投入成本10000元,那么每天最多獲利多少元? 27.為促進(jìn)節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實(shí)行居民生活用電階梯電價(jià)方案,圖中的折線反映了每戶居民每月用電電費(fèi)y(單位:元)與用電量x(單位:度)間的函數(shù)關(guān)系. (1)根據(jù)圖象,階梯電價(jià)方案分為三個(gè)檔次,請(qǐng)?zhí)顚懴卤恚? 檔次 第一檔 第二檔 第三檔 每月用電量x(度) 0<x≤140 (2)小明家某月用電70度,需交電費(fèi) 元; (3)求第二檔每月電費(fèi)y(元)與用電量x(單位:度)之間的函數(shù)表達(dá)式; (4)在每月用電量超過(guò)230度時(shí),每度電比第二檔多m元,小剛家某月用電290度,繳納電費(fèi)153元,求m的值. 28.如圖,平面直角坐標(biāo)系中,直線AB:y=﹣x+b交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B. (1)求直線AB的表達(dá)式和點(diǎn)B的坐標(biāo); (2)直線l垂直平分OB交AB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線l上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)點(diǎn)P的縱坐標(biāo)為n. ①用含n的代數(shù)式表示△ABP的面積; ②當(dāng)S△ABP=8時(shí),求點(diǎn)P的坐標(biāo); ③在②的條件下,以PB為斜邊在第一象限作等腰直角△PBC,求點(diǎn)C的坐標(biāo). 參考答案與試題解析 一、選擇題(本大題共8小題,每小題3分,共24分) 1.下列四個(gè)圖案,其中是軸對(duì)稱圖形的是( ) A. B. C. D. 【考點(diǎn)】軸對(duì)稱圖形. 【分析】根據(jù)軸對(duì)稱的定義結(jié)合各選項(xiàng)的特點(diǎn)即可得出答案. 【解答】解:A、不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤; B、不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤; C、是軸對(duì)稱圖形,故本選項(xiàng)正確; D、不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤; 故選:C. 2.在平面直角坐標(biāo)系中,點(diǎn)M(﹣2,3)在( ?。? A.第一象限 B.第二象限 C.第三象限 D.第四象限 【考點(diǎn)】點(diǎn)的坐標(biāo). 【分析】橫坐標(biāo)小于0,縱坐標(biāo)大于0,則這點(diǎn)在第二象限. 【解答】解:∵﹣2<0,3>0, ∴(﹣2,3)在第二象限, 故選B. 3.下列四組線段中,可以構(gòu)成直角三角形的是( ?。? A.3,5,6 B.2,3,4 C.1,,2 D.3,4, 【考點(diǎn)】勾股定理的逆定理. 【分析】由勾股定理的逆定理,只要驗(yàn)證兩小邊的平方和等于最長(zhǎng)邊的平方即可. 【解答】解:A、32+52≠62,不能構(gòu)成直角三角形,故不符合題意; B、22+32≠42,不能構(gòu)成直角三角形,故不符合題意; C、12+()2=22,能構(gòu)成直角三角形,故符合題意; D、32+42≠()2,不能構(gòu)成直角三角形,故不符合題意. 故選C. 4.如圖,∠C=∠D=90,AC=AD,那么△ABC與△ABD全等的理由是( ?。? A.HL B.SAS C.ASA D.AAS 【考點(diǎn)】全等三角形的判定;角平分線的性質(zhì). 【分析】已知∠C=∠D=90,AC=AD,且公共邊AB=AB,故△ABC與△ABD全等 【解答】解:在Rt△ABC與Rt△ABD中, ∴Rt△ABC≌Rt△ABD(HL) 故選(A) 5.在,﹣,,這四個(gè)數(shù)中,無(wú)理數(shù)有( ) A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 【考點(diǎn)】無(wú)理數(shù). 【分析】根據(jù)無(wú)理數(shù)的定義,可得答案. 【解答】解:﹣,是無(wú)理數(shù), 故選:B. 6.已知地球上海洋面積約為361000000km2,361000000用科學(xué)記數(shù)法可以表示為( ?。? A.36.1107 B.3.61107 C.3.61108 D.3.61109 【考點(diǎn)】科學(xué)記數(shù)法—表示較大的數(shù). 【分析】科學(xué)記數(shù)法的表示形式為a10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù). 【解答】解:將361000000用科學(xué)記數(shù)法表示為3.61108. 故選C 7.在平面直角坐標(biāo)系中,把直線y=2x﹣3沿y軸向上平移2個(gè)單位后,得到的直線的函數(shù)表達(dá)式為( ?。? A.y=2x+2 B.y=2x﹣5 C.y=2x+1 D.y=2x﹣1 【考點(diǎn)】一次函數(shù)圖象與幾何變換. 【分析】根據(jù)平移法則上加下減可得出平移后的解析式. 【解答】解:由題意得:平移后的解析式為:y=2x﹣3+2,即y=2x﹣1. 故選D. 8.在一次800米的長(zhǎng)跑比賽中,甲、乙兩人所跑的路程s(米)與各自所用時(shí)間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,則下列說(shuō)法正確的是( ?。? A.甲的速度隨時(shí)間的增加而增大 B.乙的平均速度比甲的平均速度大 C.在起跑后第180秒時(shí),兩人相遇 D.在起跑后第50秒時(shí),乙在甲的前面 【考點(diǎn)】一次函數(shù)的應(yīng)用. 【分析】A、由于線段OA表示甲所跑的路程S(米)與所用時(shí)間t(秒)之間的函數(shù)圖象,由此可以確定甲的速度是沒(méi)有變化的; B、甲比乙先到,由此可以確定甲的平均速度比乙的平均速度快; C、根據(jù)圖象可以知道起跑后180秒時(shí),兩人的路程確定是否相遇; D、根據(jù)圖象知道起跑后50秒時(shí)OB在OA的上面,由此可以確定乙是否在甲的前面. 【解答】解:A、∵線段OA表示甲所跑的路程S(米)與所用時(shí)間t(秒)之間的函數(shù)圖象,∴甲的速度是沒(méi)有變化的,故選項(xiàng)錯(cuò)誤; B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故選項(xiàng)錯(cuò)誤; C、∵起跑后180秒時(shí),兩人的路程不相等,∴他們沒(méi)有相遇,故選項(xiàng)錯(cuò)誤; D、∵起跑后50秒時(shí)OB在OA的上面,∴乙是在甲的前面,故選項(xiàng)正確. 故選D. 二、填空題(本大題共10小題,每小題3分,共30分) 9.9的算術(shù)平方根是 3?。? 【考點(diǎn)】算術(shù)平方根. 【分析】9的平方根為3,算術(shù)平方根為非負(fù),從而得出結(jié)論. 【解答】解:∵(3)2=9, ∴9的算術(shù)平方根是|3|=3. 故答案為:3. 10.P(﹣3,2)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是?。ī?,﹣2)?。? 【考點(diǎn)】關(guān)于x軸、y軸對(duì)稱的點(diǎn)的坐標(biāo). 【分析】根據(jù)點(diǎn)P(m,n)關(guān)于x軸對(duì)稱點(diǎn)的坐標(biāo)P′(m,﹣n),然后將題目所給點(diǎn)的坐標(biāo)代入即可求得解. 【解答】解:根據(jù)軸對(duì)稱的性質(zhì),得點(diǎn)P(﹣3,2)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(﹣3,﹣2). 故答案為:(﹣3,﹣2). 11.已知△ABC≌△DEF,若∠B=40,∠D=30,則∠F= 110 . 【考點(diǎn)】全等三角形的性質(zhì). 【分析】先根據(jù)全等三角形的性質(zhì)得到∠E=∠B=40,然后根據(jù)三角形內(nèi)角和求∠F的度數(shù). 【解答】解:∵△ABC≌△DEF, ∴∠E=∠B=40, ∴∠F=180﹣∠E﹣∠D=180﹣40﹣30=110. 故答案為110. 12.如圖,在△ABC中,∠B=40,BC邊的垂直平分線交BC于D,交AB于E,若CE平分∠ACB,則∠A= 60?。? 【考點(diǎn)】線段垂直平分線的性質(zhì). 【分析】由線段垂直平分線和角平分線的定義可得∠B=∠ECB=∠ACE=40,在△ABC中由三角形內(nèi)角和定理可求得∠A. 【解答】解:∵E在線段BC的垂直平分線上, ∴BE=CE, ∴∠ECB=∠B=40, ∵CE平分∠ACB, ∴∠ACD=2∠ECB=80, 又∵∠A+∠B+∠ACB=180, ∴∠A=180﹣∠B﹣∠ACB=60, 故答案為:60. 13.已知△ABC的三邊長(zhǎng)分別為5、12、13,則最長(zhǎng)邊上的中線長(zhǎng)為 . 【考點(diǎn)】直角三角形斜邊上的中線;勾股定理的逆定理. 【分析】先根據(jù)勾股定理的逆定理判斷出△ABC的形狀,再由直角三角形的性質(zhì)即可得出結(jié)論. 【解答】解:∵△ABC的三邊長(zhǎng)分別為5、12、13,52+122=132, ∴△ABC是直角三角形, ∴最長(zhǎng)邊上的中線長(zhǎng)=. 故答案為:. 14.已知一次函數(shù)y=2x+b﹣1,b= 1 時(shí),函數(shù)圖象經(jīng)過(guò)原點(diǎn). 【考點(diǎn)】一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征. 【分析】直接把原點(diǎn)坐標(biāo)(0,0)代入一次函數(shù)y=2x+b﹣1求出b的值即可. 【解答】解:∵一次函數(shù)y=2x+b﹣1的圖象過(guò)原點(diǎn), ∴0=b﹣1,解得b=1. 故答案為:1. 15.已知點(diǎn)A(3,y1)、B(2,y2)在一次函數(shù)y=﹣x+3的圖象上,則y1,y2的大小關(guān)系是y1?。肌2.(填>、=或<) 【考點(diǎn)】一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征. 【分析】首先判斷一次函數(shù)一次項(xiàng)系數(shù)為負(fù),然后根據(jù)一次函數(shù)的性質(zhì)當(dāng)k<0,y隨x的增大而減小即可作出判斷. 【解答】解:∵一次函數(shù)y=﹣x+3中k=﹣<0, ∴y隨x增大而減小, ∵3>2, ∴y1<y2. 故答案為<. 16.直線y=x+6與x軸、y軸圍成的三角形面積為 18?。ㄆ椒絾挝唬? 【考點(diǎn)】一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征. 【分析】分別求出直線與x軸、y軸的交點(diǎn)坐標(biāo),再根據(jù)直角三角形的面積公式求解即可.注意線段的長(zhǎng)度是正數(shù). 【解答】解:因?yàn)橹本€y=x+6中, ﹣=﹣=﹣6, ∴b=6, 設(shè)直線與x軸、y軸的交點(diǎn)坐標(biāo)分別為A(﹣6,0),B(0,6), ∴S△AOB=|﹣6|6=66=18, 故直線y=x+6與x軸、y軸圍成的三角形面積為18. 17.如圖,已知一次函數(shù)y=2x+b和y=kx﹣3(k≠0)的圖象交于點(diǎn)P(4,﹣6),則二元一次方程組的解是 . 【考點(diǎn)】一次函數(shù)與二元一次方程(組). 【分析】?jī)蓚€(gè)一次函數(shù)的交點(diǎn)坐標(biāo)為P(4,﹣6),那么交點(diǎn)坐標(biāo)同時(shí)滿足兩個(gè)函數(shù)的解析式,而所求的方程組正好是由兩個(gè)函數(shù)的解析式所構(gòu)成,因此兩函數(shù)的交點(diǎn)坐標(biāo)即為方程組的解. 【解答】解:∵一次函數(shù)y=2x+b和y=kx﹣3(k≠0)的圖象交于點(diǎn)P(4,﹣6), ∴點(diǎn)P(4,﹣6)滿足二元一次方程組; ∴方程組的解是. 故答案為. 18.如圖,△AOB是等腰三角形,OA=OB,點(diǎn)B在x軸的正半軸上,點(diǎn)A的坐標(biāo)是(1,1),則點(diǎn)B的坐標(biāo)是?。?,0)?。? 【考點(diǎn)】勾股定理;坐標(biāo)與圖形性質(zhì);等腰三角形的性質(zhì). 【分析】由勾股定理求出OA,得出OB,即可得出結(jié)果. 【解答】解:根據(jù)勾股定理得:OA==, ∴OB=OA=, ∴點(diǎn)B的坐標(biāo)是(,0). 故答案為:(,0). 三、解答題(本大題共10小題,共96分) 19.(1)計(jì)算:﹣(1+)0+ (2)求x的值:(x+4)3=﹣64. 【考點(diǎn)】實(shí)數(shù)的運(yùn)算;立方根;零指數(shù)冪. 【分析】(1)分別根據(jù)0指數(shù)冪的計(jì)算法則、數(shù)的開方法則計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)混合運(yùn)算的法則進(jìn)行計(jì)算即可; (2)直接把方程兩邊開立方即可得出結(jié)論. 【解答】解:(1)原式=﹣2﹣1+2 =﹣1; (2)兩邊開方得,x+4=﹣4 解得x=﹣8. 20.如圖:點(diǎn)C,D在AB上,且AC=BD,AE=FB,DE=FC.求證:△ADE≌△BCF. 【考點(diǎn)】全等三角形的判定. 【分析】先依據(jù)等式的性質(zhì)證明AD=BC,然后依據(jù)SSS進(jìn)行證明即可. 【解答】證明:∵AC=BD, ∴AC+CD=BD+CD,即AD=BC. 在△ADE和△BCF中,, ∴△ADE≌△BCF. 21.如圖,AC=AD,線段AB經(jīng)過(guò)線段CD的中點(diǎn)E,求證:BC=BD. 【考點(diǎn)】線段垂直平分線的性質(zhì). 【分析】根據(jù)題意得到AB垂直平分CD,根據(jù)線段垂直平分線的性質(zhì)證明即可. 【解答】證明:∵AC=AD,E是CD中點(diǎn), ∴AB垂直平分CD, ∴BC=BD. 22.圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,點(diǎn)A和點(diǎn)B在小正方形的頂點(diǎn)上. (1)在圖1中畫出△ABC(點(diǎn)C在小正方形的頂點(diǎn)上),使△ABC為直角三角形(畫一個(gè)即可); (2)在圖2中畫出△ABD(點(diǎn)D在小正方形的頂點(diǎn)上),使△ABD為等腰三角形(畫一個(gè)即可). 【考點(diǎn)】作圖—應(yīng)用與設(shè)計(jì)作圖. 【分析】(1)利用網(wǎng)格結(jié)構(gòu),過(guò)點(diǎn)A的豎直線與過(guò)點(diǎn)B的水平線相交于點(diǎn)C,連接即可,或過(guò)點(diǎn)A的水平線與過(guò)點(diǎn)B的豎直線相交于點(diǎn)C,連接即可; (2)根據(jù)網(wǎng)格結(jié)構(gòu),作出BD=AB或AB=AD,連接即可得解. 【解答】解:(1)如圖1,①、②,畫一個(gè)即可; (2)如圖2,①、②,畫一個(gè)即可. 23.如圖,一架2.5米長(zhǎng)的梯子AB,斜靠在一豎直的墻AC上,這時(shí)梯子的頂端A到墻底端C的距離為2.4米,如果梯子的底端B沿CB向外平移0.8米至B1,求梯子頂端A沿墻下滑的距離AA1的長(zhǎng)度. 【考點(diǎn)】勾股定理的應(yīng)用. 【分析】在直角三角形ABC中,已知AB,AC,根據(jù)勾股定理即可求BC的長(zhǎng)度,根據(jù)B1C=B1B+BC即可求得B1C的長(zhǎng)度,在直角三角形A1B1C中,已知A1B1=AB,B1C,即可求得A1C的長(zhǎng)度,根據(jù)AA1=AC﹣A1C即可求得A1A的長(zhǎng)度. 【解答】解:根據(jù)題意,在Rt△ABC中,AB=2.5,AC=2.4, 由勾股定理得: BC==0.7, ∵BB1=0.8, ∴B1C=B1B+BC=1.5. ∵在Rt△A1B1C中,A1B1=2.5,B1C=1.5, ∴A1C==2, ∴A1A=2.4﹣2=0.4. 答:那么梯子頂端沿墻下滑的距離為0.4米. 24.已知一次函數(shù)y1=kx+b與函數(shù)y=﹣2x的圖象平行,且與x軸的交點(diǎn)A的橫坐標(biāo)為2. (1)求一次函數(shù)y1=kx+b的表達(dá)式; (2)在給定的網(wǎng)格中,畫出函數(shù)一次函數(shù)y2=x+1的圖象,并求出一次函數(shù)y1=kx+b與y=x+1圖象的交點(diǎn)坐標(biāo); (3)根據(jù)圖象直接寫出,當(dāng)x取何值時(shí),y1>y2. 【考點(diǎn)】一次函數(shù)與一元一次不等式;一次函數(shù)與二元一次方程(組). 【分析】(1)利用兩直線平行的問(wèn)題得到k=﹣2,再把A點(diǎn)坐標(biāo)代入y=﹣2x+b中求出b即可; (2)利用描點(diǎn)法畫出直線y=x+1,然后通過(guò)解方程組得到一次函數(shù)y1=kx+b與y=x+1圖象的交點(diǎn)坐標(biāo); (3)觀察函數(shù)圖象,寫出直線y1=kx+b在直線y=x+1上方所對(duì)應(yīng)的自變量的范圍即可. 【解答】解:(1)∵一次函數(shù)y1=kx+b與y=﹣2x的圖象平行 且過(guò)A(2,0), ∴k=﹣2,2k+b=0, ∴b=4, ∴一次函數(shù)的表達(dá)式為y1=﹣2x+4; (2)如圖, 解方程組得, 所以一次函數(shù)y1=kx+b與y=x+1圖象的交點(diǎn)坐標(biāo)為(1,2); (3)x<1. 25.如圖,△ABC是等邊三角形,點(diǎn)D、E分別是BC、CA延長(zhǎng)線上的點(diǎn),且CD=AE,DA的延長(zhǎng)線交BE于點(diǎn)F. (1)求證:△ABE≌△CAD; (2)求∠BFD的度數(shù). 【考點(diǎn)】全等三角形的判定與性質(zhì);等邊三角形的性質(zhì). 【分析】(1)由△ABC是等邊三角形,得到∠BAC=∠ACB=60,AC=AB,于是得到∠EAB=∠ACD=120,即可得到結(jié)論; (2)由全等三角形的性質(zhì)得到∠E=∠D,由于∠D+∠CAD=∠ACB=60,即可得到結(jié)論. 【解答】(1)證明:∵△ABC是等邊三角形, ∴∠BAC=∠ACB=60,AC=AB, ∴∠EAB=∠ACD=120, 在△CAD和△ABE中, , ∴△ABE≌△CAD; (2)解:∵△ABE≌△CAD, ∴∠E=∠D, ∵∠D+∠CAD=∠ACB=60, ∴∠AFB=∠E+∠EAF=∠D+∠CAD=60. 26.某工廠每天生產(chǎn)A、B兩種款式的布制環(huán)保購(gòu)物袋共4500個(gè),已知A種購(gòu)物袋成本2元/個(gè),售價(jià)2.3元/個(gè);B種購(gòu)物袋成本3元/個(gè),售價(jià)3.5元/個(gè).設(shè)每天生產(chǎn)A種購(gòu)物袋x個(gè),該工廠每天共需成本y元,共獲利w元. (1)求出y與x的函數(shù)表達(dá)式; (2)求出w與x的函數(shù)表達(dá)式; (3)如果該廠每天最多投入成本10000元,那么每天最多獲利多少元? 【考點(diǎn)】一次函數(shù)的應(yīng)用. 【分析】(1)根據(jù)總成本y=A種購(gòu)物袋x個(gè)的成本+B種購(gòu)物袋x個(gè)的成本即可得到答案. (2)根據(jù)總利潤(rùn)w=A種購(gòu)物袋x個(gè)的利潤(rùn)+B種購(gòu)物袋x個(gè)的利潤(rùn)即可得到答案. (3)列出不等式,根據(jù)函數(shù)的增減性解決. 【解答】解:(1)根據(jù)題意得: y=2x+3 y=﹣x+13500 (2)根據(jù)題意得: w=(2.3﹣2)x+(3.5﹣3) w=﹣0.2x+2250 (3)根據(jù)題意得:﹣x+13500≤10000 解得x≥3500元, ∵k=﹣0.2<0, ∴y隨x增大而減小, ∴當(dāng)x=3500時(shí),y=﹣0.23500+2250=1550, 答:該廠每天至多獲利1550元. 27.為促進(jìn)節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實(shí)行居民生活用電階梯電價(jià)方案,圖中的折線反映了每戶居民每月用電- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 中學(xué) 期末 數(shù)學(xué)試卷 兩套合集附 答案 解析
鏈接地址:http://m.hcyjhs8.com/p-9014967.html